Cho tam giác ABC có ba góc nhọn. AB<AC. Kẻ các đường cao AD,BE,CF đồng quy tại H
a, C/m tam giác AFH đồng dạng với tam giác ADB
b,C/m tam giác AFD đong dạng với tam giác AHB
c, C/m DA là tia phân giác của góc FDE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E co
góc DAB chung
=>ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AB*AE;AD/AB=AE/AC
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
Sửa đề: Cho ΔDEF nhọn
a: Xét ΔDKF vuông tại K và ΔDIE vuông tại I có
\(\widehat{KDF}\) chung
Do đó: ΔDKF~ΔDIE
=>\(\dfrac{DK}{DI}=\dfrac{DF}{DE}\)
=>\(DK\cdot DE=DI\cdot DF\)
b: ta có: \(\dfrac{DK}{DI}=\dfrac{DF}{DE}\)
=>\(\dfrac{DK}{DF}=\dfrac{DI}{DE}\)
Xét ΔDKI và ΔDFE có
\(\dfrac{DK}{DF}=\dfrac{DI}{DE}\)
\(\widehat{KDI}\) chung
Do đó: ΔDKI~ΔDFE
c: Xét ΔFIE vuông tại I và ΔFHD vuông tại H có
\(\widehat{HFD}\) chung
Do đó: ΔFIE~ΔFHD
=>\(\dfrac{FI}{FH}=\dfrac{FE}{FD}\)
=>\(\dfrac{FI}{FE}=\dfrac{FH}{FD}\)
Xét ΔFIH và ΔFED có
\(\dfrac{FI}{FE}=\dfrac{FH}{FD}\)
\(\widehat{EFD}\) chung
Do đó: ΔFIH~ΔFED
=>\(\widehat{FIH}=\widehat{FED}\)
d:
Sửa đề: \(EK\cdot ED+FI\cdot FD=EF^2\)
Xét ΔEKF vuông tại K và ΔEHD vuông tại H có
góc KEF chung
Do đó: ΔEKF~ΔEHD
=>\(\dfrac{EK}{EH}=\dfrac{EF}{ED}\)
=>\(EK\cdot ED=EF\cdot EH\)
Ta có: \(\dfrac{FI}{FE}=\dfrac{FH}{FD}\)
=>\(FI\cdot FD=FH\cdot FE\)
\(EK\cdot ED+FI\cdot FD\)
\(=EF\cdot EH+FH\cdot EF=EF^2\)
a: Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}\)
nên BCEF là tứ giác nội tiếp
Xét tứ giác CDHE có
\(\widehat{HDC}+\widehat{HEC}=180^0\)
Do đó: CDHE là tứ giác nội tiếp
a: Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}=90^0\)
Do đó: BCEF là tứ giác nội tiếp
Xét tứ giác CDHE có
\(\widehat{CDH}+\widehat{CEH}=180^0\)
Do đó: CDHE là tứ giác nội tiếp
b: \(\widehat{FEB}=\widehat{BAD}\)(vì AFHE là tứ giác nội tiếp)
\(\widehat{BED}=\widehat{FCB}\)(BFEC là tứ giác nội tiếp)
mà \(\widehat{BAD}=\widehat{FCB}\)
nên \(\widehat{FEB}=\widehat{BED}\)
hay EB là tia phân giác góc FED
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc BAD chung
=>ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD*AC=AE*AB; AD/AB=AE/AC
b: Xet ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng với ΔABC
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
góc CDH+góc CEH=90+90=180 độ
=>CDHE nội tiếp
b: góc AFH+góc AEH=180 độ
=>AFHE nội tiếp
góc FEH=góc BAD
góc DEH=góc FCB
mà góc BAD=góc FCB
nên góc FEH=góc DEH
=>EH là phân giác của góc FED
Xét ΔBFE và ΔDHE có
góc BEF=góc DEH
góc BFE=góc DHE
=>ΔBFE đồng dạng với ΔDHE
a: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/2=CD/3=(BD+CD)/(2+3)=8/5=1,6
=>BD=3,2cm; CD=4,8cm
b: Xét ΔDEB và ΔDCA có
góc DEB=góc DCA
góc EDB=góc CDA
=>ΔDEB đồng dạng với ΔDCA
Xét ΔABE và ΔADC có
góc AEB=góc ACD
góc BAE=góc DAC
=>ΔABE đồng dạng với ΔADC
c: ΔABE đồng dạng với ΔADC
=>AB/AD=AE/AC
=>AB*AC=AD*AE
d: góc ACB=góc AEB
=>ABEC nội tiếp
=>góc ABE+góc ACE=180 độ
a) Xét \(\Delta\)ABE và \(\Delta\)ACF có
\(\widehat{A}\)là góc chung
\(\widehat{AEB}\)=\(\widehat{AFC}\)(=\(90^O\))
=> \(\Delta\)ABE đồng dạng \(\Delta\)ACF (g.g)
=> \(\frac{AE}{AF}\)=\(\frac{AB}{AC}\)
=> \(\frac{AE}{AB}\)=\(\frac{AF}{AC}\)
Xét \(\Delta\)AEF và \(\Delta\)ABC có
\(\frac{AE}{AB}\)=\(\frac{AF}{AC}\)
Và \(\widehat{A}\)góc chung
Suy ra \(\Delta\)AEF đồng dạng \(\Delta\)ABC( c.g.c) (1)
b) Tương tự, chứng minh \(\Delta\)BEC đồng dạng\(\Delta\)ADC ( G.G)
=> \(\frac{EC}{DC}\)=\(\frac{BC}{AC}\)
=> \(\frac{EC}{BC}\)=\(\frac{DC}{AC}\)
Xét \(\Delta\)DEC và \(\Delta\)ABC có
\(\frac{EC}{BC}\)=\(\frac{DC}{AC}\)
\(\widehat{C}\)góc chung
=> \(\Delta\)DEC đồng dạng \(\Delta\)ABC( c.g.c) (2)
Từ (1) (2) => \(\Delta\)DEC đồng dạng \(\Delta\)AEF
=> \(\widehat{DEC}\)=\(\widehat{AEF}\)(3)
Mà \(\widehat{AEB}\)= \(\widehat{CEB}\)= \(90^O\)
=> \(\widehat{AEF}\)+\(\widehat{FEB}\)=\(\widehat{DEC}\)+\(\widehat{BED}\)(4)
Từ (3)(4) => \(\widehat{FEB}\)=\(\widehat{BED}\)
=> EH là phân giác góc FED
A B C E F H I
Giải
a) Xét \(\Delta BHF\) và \(\Delta CHE\) có:
\(\widehat{BHF}=\widehat{CHE}\) (vì đối đỉnh)
\(\widehat{BFH}=\widehat{CEH}=90^o\)
=> \(\Delta BHF\) s \(\Delta CHE\) (g - g)
b) Xét \(\Delta ABE\) và \(\Delta ACF\) có:
\(\widehat{A}\) là góc chung
\(\widehat{AEB}=\widehat{AFC}=90^o\)
=> \(\Delta ABE\) s \(\Delta ACF\) (g - g)
=> \(\frac{AB}{AC}=\frac{AE}{AF}\)
=> AF . AB = AE . AC
c) Xét \(\Delta AEF\) và \(\Delta ABC\) có:
\(\widehat{A}\) là góc chung
\(\frac{AE}{AB}=\frac{AF}{AC}\) (vì \(\Delta ABE\) s \(\Delta ACF\))
=> \(\Delta AEF\)s \(\Delta ABC\) (c - g - c)
d) Câu d mình không nghĩ ra. Bạn tự làm nha, chắc là xét tam giác đồng dạng rồi suy ra hai góc bằng nhau và sẽ suy ra đường phân giác đó.
a: Xét ΔAFH vuông tại F và ΔADB vuông tại D có
\(\widehat{FAH}\) chung
DO đó: ΔAFH~ΔADB
b: ΔAFH~ΔADB
=>\(\dfrac{AF}{AD}=\dfrac{AH}{AB}\)
=>\(\dfrac{AF}{AH}=\dfrac{AD}{AB}\)
Xét ΔAFD và ΔAHB có
\(\dfrac{AF}{AH}=\dfrac{AD}{AB}\)
\(\widehat{FAD}\) chung
Do đó: ΔAFD~ΔAHB
c: ΔAFD~ΔAHB
=>\(\widehat{ADF}=\widehat{ABH}\)
=>\(\widehat{ADF}=\widehat{ACH}\)
Xét ΔAEH vuông tại E và ΔADC vuông tại D có
\(\widehat{EAH}\) chung
DO đó: ΔAEH~ΔADC
=>\(\dfrac{AE}{AD}=\dfrac{AH}{AC}\)
=>\(\dfrac{AE}{AH}=\dfrac{AD}{AC}\)
Xét ΔAED và ΔAHC có
\(\dfrac{AE}{AH}=\dfrac{AD}{AC}\)
\(\widehat{EAD}\) chung
Do đó: ΔAED~ΔAHC
=>\(\widehat{ADE}=\widehat{ACH}\)
=>\(\widehat{FDA}=\widehat{EDA}\)
=>DA là phân giác của góc FDE