K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: EM=MA

Xét ΔMAB và ΔMEC có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMEC

=>\(\widehat{MAB}=\widehat{MEC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//EC

19 tháng 12 2020

Cứng đờ tay luôn rồi, khổ quá:((

a) Xét \(\Delta DBF\) và \(\Delta FED:\)

DF:cạnh chung

\(\widehat{BDF}=\widehat{EFD}\)(AB//EF)

\(\widehat{BFD}=\widehat{EDF}\)(DE//BC)

=> \(\Delta BDF=\Delta EFD\left(g-c-g\right)\)

b) (Ở lớp 8 thì sé có cái đường trung bình ý bạn, nó sẽ có tính chất luôn, nhưng lớp 7 chưa học đành làm theo lớp 7 vậy)

Ta có: \(\widehat{DAE}+\widehat{AED}+\widehat{EDA}=180^o\) (Tổng 3 góc trong 1 tam giác)

Lại có: \(\widehat{AED}+\widehat{DEF}+\widehat{FEC}=180^o\)  

Mà \(\widehat{DEF}=\widehat{EDA}\)(AB//EF)

=>\(\widehat{DAE}=\widehat{FEC}\)

Xét \(\Delta DAE\) và \(\Delta FEC:\)

DA=FE(=BD)

\(\widehat{DAE}=\widehat{EFC}\left(=\widehat{DBF}\right)\)

\(\widehat{DAE}=\widehat{FEC}\) (cmt)

=>\(\Delta DAE=\Delta FEC\left(g-c-g\right)\)

=> DE=FC(2 cạnh t/ứ)

=> Đpcm

 

Xét tứ giác AEDF có

AE//DF

AF//DE

Do đó: AEDF là hình bình hành

Hình bình hành AEDF có AD là phân giác của \(\widehat{EAF}\)

nên AEDF là hình thoi

5 tháng 12 2023

Xét tứ giác AEDF có

AE//DF

AF//DE

Do đó: AEDF là hình bình hành

Hình bình hành AEDF có AD là phân giác của góc EAF

=))AEDF là hình thoi

17 tháng 10 2021

a: Xét ΔABC có 

E là trung điểm của AB

F là trung điểm của AC

Do đó: EF là đường trung bình củaΔBAC

Suy ra: EF//BC

a: Xét ΔABC có DE//BC

nên DE/BC=AD/AB

=>DE/10=3/5

=>DE=6cm

b: Xét ΔADE và ΔCGE có

góc AED=góc CEG

góc EAD=góc ECG

=>ΔADE đồng dạng với ΔCGE

c: Xét tứ giác DBCG có

DG//BC

DB//CG

=>DBCG là hình bình hành

=>DB=CG

a: Xét tứ giác BDEM có 

DE//BM

BD//EM

Do đó: BDEM là hình bình hành

Suy ra: DE=BM

mà DE=BC/2

nên BM=BC/2

hay M là trung điểm của BC

Xét ΔADE và ΔEMC có

\(\widehat{A}=\widehat{CEM}\)

DE=MC

\(\widehat{ADE}=\widehat{EMC}\)

Do đó: ΔADE=ΔEMC

b: Xét ΔABC có

DE//BC

nên AD/AB=DE/BC

=>AD/AB=1/2

=>AD=1/2AB

hay D là trung điểm của AB

 

7 tháng 5 2016

a) Xét tam giác ABC vuông tại A và tam giác ADE vuông tại A có:

                                                  AD=AB(gt)

                                                  AE=AC( gt)

=>Tam giác ABC=tam giác ADE (2 cạnh góc vuông)

b) Tam giác ABD có:  A=900 ; AB=AD (gt)

=>Tam giác ABD vuông cân tại A.

Mk biết làm nhiu đó thui

 

10 tháng 5 2016

mình làm tiếp theo câu B nha

chúng minh BD song song CE

ta có góc BCA=ADE(vì hai tam gics DAE=BAC câu a)

và nằm ở vị trí so le trong => DB //CE

còn câu c cái đề hình như bại sai sai sao ó

 

 

14 tháng 12 2021

Cm: a) Ta có: BA ⊥⊥AC (gt)

                        HD // AB (gt)

=> HD ⊥⊥AC => ˆHDA=900HDA^=900

Ta lại có: AC ⊥⊥AB (gt)

   HE // AC (gt)

=> HE ⊥⊥AB => ˆHEA=900HEA^=900

Xét tứ giác AEHD có: ˆA=ˆAEH=ˆHDA=900A^=AEH^=HDA^=900

=> AEHD là HCN => AH = DE

b) Gọi O là giao điểm của AH và DE

Ta có: AEHD là HCN => OE = OH = OD = OA
=> t/giác OAD cân tại O => ˆOAD=ˆODAOAD^=ODA^ (1)

Xét t/giác ABC vuông tại A có AM là đường trung tuyến

-> AM = BM = MC = 1/2 BC
=> t/giác AMC cân tại M => ˆMAC=ˆCMAC^=C^

Ta có: ˆB+ˆC=900B^+C^=900 (phụ nhau)

  ˆC+ˆHAC=900C^+HAC^=900 (phụ nhau)

=> ˆB=ˆHACB^=HAC^ hay ˆB=ˆOADB^=OAD^ (2) 
Từ (1) và (2) => ˆODA=ˆBODA^=B^

Gọi I là giao điểm của MA và ED

Xét t/giác IAD có: ˆIAD+ˆIDA+ˆAID=1800IAD^+IDA^+AID^=1800 (tổng 3 góc của 1 t/giác)

=> ˆAID=1800−(IAD+ˆIDA)AID^=1800−(IAD+IDA^)

hay ˆAID=1800−(ˆB+ˆC)=1800−900=900AID^=1800−(B^+C^)=1800−900=900

=> AM⊥DEAM⊥DE(Đpcm)

c) (thiếu đề)

1: góc EDA=góc BAD

=>góc EDA=góc EAD

=>ΔEAD cân tại E

2:

Xét tứ giác BKED có

BK//ED

KE//BD

=>BKED là hbh

=>BK=ED và KE=BD

Xét ΔBKD và ΔEDK có

BK=ED

KD chung

BD=EK

=>ΔBKD=ΔEDK