a chứng minh rằng tổng của hai số tự nhiên lẻ liên tiếp là một số chia hết cho 4
b Chứng minh rằng nếu P và p + 2 là hai số nguyên tố lớn hơn 3 thì tổng của chúng chia hết cho 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số tự nhiên lẻ liên tiếp là : 2k + 1 ; 2k + 3
Có 2k + 1 + 2k + 3 = 4k + 4 = 4(k+1) chia hết cho 4
Vậy .....
2 số lẻ liên tiếp là
2k+1;2k+3(k thuoc N)
tổng là:
2k+1+2k+3
=4k+4
=4(k+4)
chia het cho 4
chắc vậy .
a) Gọi 2 số tự nhiên lẻ liên tiếp là 2k + 1 ; 2k + 3
=> 2k + 1 + 2k + 3 = ( 2k + 2k ) + ( 1 + 3 ) = 4k + 4 \(⋮\)4 ( Vì 4k và 4 đều \(⋮\)4 )
b) Gọi 3 số tự nhiên chẵn liên tiếp là 2k ; 2k + 2 ; 2k + 4
=> 2k + 2k + 2 + 2k + 4 = ( 2k + 2k + 2k ) + ( 2 + 4 ) = 6k + 6 \(⋮\)6 ( Vì 6k và 6 đều \(⋮\)6 )
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
Gọi 3 số tự nhiên liên tiếp là: a ; a + 1 ; a + 2
Ta có tổng 3 số tự nhiên liên tiếp là:
a + (a + 1) + (a + 2) = 3a + 3 chia hết cho 3
1) b+5:7 ( dấu chia hết nha tại bàn phím k có dấu này nên k gõ đc) 2) 2k+1;2k+3 ; 2k+5 3) bốn số lẻ liên tiếp sẽ có dạng là: 2k+1; 2k+3;2k+5;2k+7 =) tổng của 4 số lẻ liên tiếp là: 2k+1+2k+3+2k+5+2k+7=8k+16 . mà 8k chia hết cho 8; 18 chia hết cho 8=)tổng của 2k+1; 2k+3;2k+5;2k+7 chia hết cho 8 hay tổng của 4 số lẻ liên tiếp luôn chia hết cho 8 (đpcm) 4) bốn số chẵn liên tiếp sẽ có dạng là : 2k;2k+2;2k+4;2k+6=) tổng của 4 số chẵn liên tiếp là 8k+12 mà 8k chia hết cho 8 nhưng 12 không chia hết cho 8 nên tổng của 2k:2k+2;2k+4;2k+6 không chia hết cho 8 hay tổng 4 số chẵn liên tiếp k chia hết cho 8(đpcm)
Bài 1 :
Nếu n lẻ thì n + 1 chẵn do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên không chia hết cho n vì n là số lẻ
Bài 2 :
Nếu n chẵn thì n + 1 lẻ do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên chia hết cho n vì n là số chẵn
a) Goi :3 số tự nhiên liên tiếp la : n, n+1, n+2
=> tổng : n+n+1+n+2 = 3n+3 = 3(n+1) chia hết cho 3 Vậy : tổng của ba số tự nhiên liên tiếp chia hết cho 3
b) Goi 2 so le lien tiep co dang 2k+1 va 2k+3
Gọi D là ước số chung của chúng.
Ta có 2n + 1 chia hết cho D và 3n + 3 chia hết cho D
Nên 2n + 3 - ( 2n+1) chia hết D hay 2 chia hết cho D
Nhưng D ko thể = 2 vì D là ước chung của 2 số lẻ
.Vậy D = 1 tức là 2 số lẻ liên tiếp bao giờ cũng nguyên tố cùng nhau!
chúc bạn học tập tốt !!!
a) Hai số lẻ liên tiếp là : \(2k+1;2k+3\left(k\in Z\right)\)
Tổng 2 số trên là :
\(2k+1+2k+3=4k+4=4\left(k+1\right)⋮4\)
\(\Rightarrowđpcm\)