Trong góc tù AOB lần lượt vẽ các tia OC ; OD cho OC vuông góc OA và OD vuông góc OB
a, So sánh góc BOC và góc AOD
b, Vẽ tia OM là tia phân giác của góc AOB. Xét xem tia OM có phải là tia phân giác của góc COD không? Vì sao
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì O C ⊥ O A nên A O C ^ = 90 0 do đó A O D ^ + D O C ^ = A O C ^ suy ra A O D ^ = A O B ^ − B O D ^ = A O B ^ − 90 0 (1)
Vì O D ⊥ O B nên B O D ^ = 90 0 do đó B O C ^ + C O D ^ = B O D ^ suy ra B O C ^ = A O B ^ − A O C ^ = A O B ^ − 90 0 (2)
Từ (1) và (2) ta có B O C ^ = A O D ^ .
b) Vì tia OM là tia phân giác của A O B ^ nên A O M ^ = M O B ^ = 1 2 A O B ^ .
Mà C O M ^ + M O A ^ = 90 0 ( do A O C ^ = 90 0 );
D O M ^ + M O B ^ = 90 0 ( do B O D ^ = 90 0 ).
Vậy C O M ^ = D O M ^ ( cùng phụ với hai góc bằng nhau). (3)
Vì OM nằm giữa hai tia OC và OD và C O M ^ = D O M ^ (theo (3)) nên OM có phải là tia phân giác của D O C ^ .
A O B C D m n
a) Ta có : \(\hept{\begin{cases}\widehat{AOB}=90^o+\widehat{AOC}\\\widehat{COD}=90^o-\widehat{BOC}\end{cases}\Rightarrow\widehat{AOB}+\widehat{COD}=90^o+\widehat{AOC}+90^o-\widehat{BOC}=180^o\Rightarrowđpcm}\)
b) Ta có : \(\widehat{BOC}=\widehat{AOD}\) (cùng phụ nhau với \(\widehat{COD}\))
\(\Rightarrow\frac{\widehat{BOC}}{2}=\frac{\widehat{AOD}}{2}\Rightarrow\widehat{COM}=\widehat{AON}\) (phân giác On và On)
Lại có : \(\widehat{CON}+\widehat{AON}=90^o\Rightarrow\widehat{CON}+\widehat{COM}=90^o\) hay \(\widehat{mOn}=90^o\)
\(\Rightarrow Om\perp On\left(đpcm\right)\)
a) OC và OD lần lượt vuông góc với OA và OB
⇒Góc AOC=Góc BOD=90o⇒Góc AOC=Góc BOD=90o
Ta có:
Góc AOC=AOD+DOC
Góc BOD=BOC+DOC
⇒AOD=BOC