Bài 2: Cho tam giác ABC vuông tại A, đường cao AH (H e BC) Bài BC = 10cm và sinC=3/4 Tình độ dài các đoạn thẳng BH,CH,AB,AC?
Bài 3: Cho tam giác ABC cân tại A, B = 65', đường cao CH = 3,6cm. Tính diện tích tam giác ABC?
Bài 4: Cho tam giác ABC vuông tại A, AB-17cm, C=62'. Tính độ dài đường trung tuyển CM?
Bài 6 Cho ABC vuông tại A. Biết BC= 50cm, tanB = 4/3. Tỉnh khoảng cách từ A đến BC và độ dài đường phân giác AD của tam giác ABC
Bài 7. Cho tam giác ABC vuông tại A, đường cao AH (H e BC). Biết B = 60', BC = 10cm. Tính diện
tích tam giác ABH ( kết quả làm tròn đến chữ số thập phân thứ nhất).
Bài 8. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 6cm và Cos (HAB)= 2/3. Tính chu và diện tích tam giác AHC
Bài 9. Cho tam giác ABC vuông tại A, đường cao AH và phân giác AD. Biết :AB=9cm , AC=12cm.Tính diện tích tam giác ABD
Bài 2:
Xét tam giác ABC vuông tại A ta có:
\(sinC=\dfrac{AB}{BC}=>\dfrac{AB}{BC}=\dfrac{3}{4}\\ =>AB=\dfrac{3}{4}BC=\dfrac{3}{4}\cdot10=\dfrac{15}{2}\left(cm\right)\)
Áp dụng định lý Pythagore cho tam giác ABC ta có:
\(AB^2+AC^2=BC^2\\ =>\left(\dfrac{15}{2}\right)^2+AC^2=10^2\\ =>AC=\sqrt{10^2-\left(\dfrac{15}{2}\right)^2}=\dfrac{5\sqrt{7}}{2}\left(cm\right)\)
Áp dụng hệ thức lượng ta có:
\(AB^2=BC\cdot BH=>BH=\dfrac{AB^2}{BC}=\left(\dfrac{15}{2}\right)^2:10=\dfrac{225}{40}\left(cm\right)\\ AC^2=BC\cdot CH=>CH=\dfrac{AC^2}{BC}=\left(\dfrac{5\sqrt{7}}{2}\right)^2:10=\dfrac{175}{40}\left(cm\right)\)
Bài 9:
ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot9\cdot12=54\left(cm^2\right)\)
Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{9}{12}=\dfrac{3}{4}\)
=>\(\dfrac{BD}{BC}=\dfrac{3}{7}\)
=>\(S_{ABD}=54\cdot\dfrac{3}{7}=\dfrac{162}{7}\left(cm^2\right)\)