Tính
A = 1+ \(\dfrac{\text{3}}{\text{2}}\) + \(\dfrac{\text{7}}{\text{6}}\) + \(\dfrac{13}{12}\) + ..... + \(\dfrac{9901}{9900}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{3}{2}+\frac{7}{6}+\frac{13}{12}+...+\frac{9901}{9900}\)
\(A=1+\frac{1}{2}+1+\frac{1}{6}+1+\frac{1}{12}+...+1+\frac{1}{9900}\)\(A=1+1+1+...+1(51c/s)+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\)
\(A=51+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(A=51+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=51+1-\frac{1}{100}\)
\(A=52-\frac{1}{100}\)
\(A=\frac{5199}{100}\)
Cái đoạn 1+1+1+...+1 ( 51 c/s) số tớ ko thể giải thích trên máy tính đc nên bn tự suy nghĩ nhé:)))
A= 3/2+7/6+...+9901/9900
A=1+1/2+1+1/6+1+1/12+...+1/9900
A=(1+1+1+...+1)+(1/2+1/6+1/12+...+1/9900)
A=(1+1+1+...+1)+(1/1x2+1/2x3+1/3x4+...+1/99x100)
A=(1+1+1+...+1)+(1/1-1/2+1/2-1/3+1/3-1/4+1/4-...-1/99+1/99-1/100)
A=99+(1/1-1/100)
A=99+99/100
A=9999/100
A=9900/100+99
A=3/2+13/12+31/30+...+9901/9900
= 1+1/2+1+1/12+1+1/30+...+1+1/9900
=1+1+1+...+1+1(50 cs)+1/2+1/12+1/30+...+1/9900
=50+1/2+1/12+1/30+...+1/9900
B=5/6+19/20+41/42+...+10099/10100
=(1-1/6)+(1-1/20)+(1-1/42)+...+(1-1/10100)
=1+1+...+1(50cs)-1/6-1/20-1/42-...-1/10100
A-B=(50+1/2+1/12+1/30+...+1/9900)-(50-1/6-1/20-1/42-...-1/10100)
=1/2+1/6+1/12+1/20+...+1/9900+1/10100
=1/1.2+1/2.3+1/3.4+1/4.5+...+1/99.100+1/100.101
=1-1/2+1/2-1/3+1/3-1/4+1/4-...+1/99-1/100+1/100-1/101
=1-1/101
=100/101
\(A=\frac{7}{6}+\frac{13}{12}+\frac{21}{20}+...+\frac{9901}{9900}=\left(1+\frac{1}{2.3}\right)+\left(1+\frac{1}{3.4}\right)+\left(1+\frac{1}{4.5}\right)+...+\left(1+\frac{1}{99.100}\right)\)\(=\left(1+1+1+...+1\right)+\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)
\(=98+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)=98+\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=98+\frac{49}{100}=98\frac{49}{100}\)
1.
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{a}{2}=\frac{b}{3}=\frac{c}{4}$
$=\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b+3c}{2+6+12}=\frac{-20}{20}=-1$
$\Rightarrow a=2(-1)=-2; b=3(-1)=-3; c=4(-1)=-4$
2.
$S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{9900}$
$=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}$
$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{100-99}{99.100}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}$
$=1-\frac{1}{100}=\frac{99}{100}$
a) Ta có : \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)
\(\Rightarrow\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b+3c}{2+6+12}=\dfrac{-20}{20}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}a=\left(-1\right)\cdot2=-2\\b=\dfrac{\left(-1\right).6}{2}=-3\\c=\dfrac{\left(-1\right).12}{3}=-4\end{matrix}\right.\)
b) Ta có : \(S=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\)
\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\).
Vậy : \(S=\dfrac{99}{100}.\)
a)\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b+3c}{2+6+12}=-\dfrac{20}{20}=-1\)
\(\left\{{}\begin{matrix}\dfrac{a}{2}=-1\Leftrightarrow a=-2\\\dfrac{b}{3}=-1\Leftrightarrow b=-3\\\dfrac{c}{4}=-1\Leftrightarrow c=-4\end{matrix}\right.\)
b)\(S=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\\ =\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}\)
a, 1/20; 1/30; 1/42
b ko vì nó ko theo quy luật của dãy trên
c 20 p/s đầu là 1/2 + 1/6+1/12+1/20+1/30+1/42+...+1/420
=1/1*2+1/2*3+1/3*4+...+1/20*21
=1-1/2+1/2+1/3+...+1/20-1/21
=1-1/21
=20/21
k mk nha bạn mk là người đầu tiên mà
\(A=1+\dfrac{3}{2}+\dfrac{7}{6}+...+\dfrac{9901}{9900}\)
\(=1+1+\dfrac{1}{2}+1+\dfrac{1}{6}+...+1+\dfrac{1}{9900}\)
\(=100+\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{9900}\right)\)
\(=100+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=100+\left(1-\dfrac{1}{100}\right)=100+\dfrac{99}{100}=\dfrac{10099}{100}\)
`A = 1 + 3/2 + 7/6 + .. + 9901/9900`
`A = 1 + 1 + 1/2 + 1 + 1/6 + .. + 1 + 1/9900`
`A = (1+1+1+...+1) + (1/(1.2) + 1/(2.3) + ... + 1/(99.100))`
Đặt `B = 1/(1.2) + 1/(2.3) + ... + 1/(99.100); C = 1+1+1+...+1`
Số số hạng trong B là:
`(99 - 1) : 1 + 1= 99` (số hạng)
Số số hạng trong C là:
`99 + 1 = 100` (số hạng)
(Vì có thêm số hạng 1 ở ngoài)
`B = 1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100`
`= 1 - 1/100`
`= 99/100`
Khi đó:
`A = C + B = 100 . 1 + 99/100 = 100 + 99/100 = 10099/100`