K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2017

Hình đa giác TenDaGiac1: DaGiac(D, C, 4) Hình đa giác TenDaGiac1: DaGiac(D, C, 4) Đoạn thẳng f: Đoạn thẳng [D, C] Đoạn thẳng g: Đoạn thẳng [C, B] Đoạn thẳng h: Đoạn thẳng [B, A] Đoạn thẳng i: Đoạn thẳng [A, D] Đoạn thẳng j: Đoạn thẳng [M, C] Đoạn thẳng k: Đoạn thẳng [D, N] Đoạn thẳng l: Đoạn thẳng [A, I] Đoạn thẳng m: Đoạn thẳng [D, M] Đoạn thẳng q: Đoạn thẳng [E, I] Đoạn thẳng r: Đoạn thẳng [A, E] Đoạn thẳng s: Đoạn thẳng [D, K] Đoạn thẳng b: Đoạn thẳng [B, H] Đoạn thẳng c: Đoạn thẳng [M, H] D = (-1.82, 1.18) D = (-1.82, 1.18) D = (-1.82, 1.18) C = (4.66, 1.22) C = (4.66, 1.22) C = (4.66, 1.22) Điểm B: DaGiac(D, C, 4) Điểm B: DaGiac(D, C, 4) Điểm B: DaGiac(D, C, 4) Điểm A: DaGiac(D, C, 4) Điểm A: DaGiac(D, C, 4) Điểm A: DaGiac(D, C, 4) Điểm M: Trung điểm của h Điểm M: Trung điểm của h Điểm M: Trung điểm của h Điểm N: Trung điểm của g Điểm N: Trung điểm của g Điểm N: Trung điểm của g Điểm E: Trung điểm của f Điểm E: Trung điểm của f Điểm E: Trung điểm của f Điểm I: Giao điểm đường của j, k Điểm I: Giao điểm đường của j, k Điểm I: Giao điểm đường của j, k Điểm K: Giao điểm đường của n, g Điểm K: Giao điểm đường của n, g Điểm K: Giao điểm đường của n, g Điểm J: Giao điểm đường của k, r Điểm J: Giao điểm đường của k, r Điểm J: Giao điểm đường của k, r Điểm H: Giao điểm đường của t, a Điểm H: Giao điểm đường của t, a Điểm H: Giao điểm đường của t, a

a) Xét tam giác MBC và NCD có:

\(\widehat{MBC}=\widehat{NCD}=90^o\)

MB = NC

BC = CD

\(\Rightarrow\Delta MBC=\Delta NCD\left(c-g-c\right)\)

\(\Rightarrow\widehat{MCB}=\widehat{NDC}\Rightarrow\widehat{MCB}+\widehat{INC}=\widehat{NDC}+\widehat{INC}=90^o\)

\(\Rightarrow\widehat{CIN}=180^o-90^o=90^o\Rightarrow MC\perp ND\)

b)  Gọi giao điểm của AE và DN là J.

Xét tứ giác AMCE có AM song song và bằng EC nên AMCE là hình bình hành.

Vậy thì AE // MC \(\Rightarrow AE\perp DN\)

Xét tam giác vuoong DIC có IE là trung tuyến ứng với cạnh huyền nên EI = ED.

Xét tam giác cân EDI có EJ là đường cao nên nó cũng là phân giác \(\Rightarrow\widehat{DEA}=\widehat{IEA}\)

Vậy thì \(\Delta ADE=\Delta AIE\left(c-g-c\right)\Rightarrow AD=AI\Rightarrow AB=AI\)

c) Coi độ dài cạnh hình vuông là 1. Ta có :

\(MD=\sqrt{1^2+0,5^2}=\frac{\sqrt{5}}{2}\)

Kéo dài DM cắt BC tại H.Ta có DH = 2DM, HB = BC

Xét tam giác DHC, áp dụng tính chất đường phân giác trong, ta có:

\(\frac{KC}{KH}=\frac{DC}{DM}=\frac{1}{\sqrt{5}}\)

Lại có \(KC+KH=CH=2\Rightarrow HK=2-KC\)

\(\Rightarrow2-KC=\sqrt{5}KC\Rightarrow KC=\frac{2}{\sqrt{5}+1}\)

Suy ra \(KC+AM=\frac{2}{\sqrt{5}+1}+\frac{1}{2}=\frac{\sqrt{5}}{2}=MD\)

Vạy MD = KC + AM

13 tháng 12 2018

biết làm chưa chỉ với

19 tháng 2 2020

Lấy F trên tia đối của AB sao cho AF=CK

=>AM+CK=AM=MF 3

Xét tam giác DAF và tam giác NCN có

AF=CK(gt)

DAF=DCK(gt DK là pg)

AD=CD(gt)

=> tam giác DAF= tam giác DCK(c-g-c)

=>AFD=CKD( 2 góc t/ứng)

Mà CKD=ADK(slt)=>AFD=ADK 1

Mặt khác ADK= ADM+MDK, MDK=KDC(gt)

=>ADK=ADM+KDC=ADM+ADF 2

Từ 1 và 2=>AFD=ADM+ADF=MDF=>tam giác FMD cân tại M=>FM=MD 4

 Từ 3 và 4=>AM+CK=DM

     -dpcm-

a góc ABC+góc ACB=90 độ

=>góc OBC+góc OCB=45 độ

=>góc BOC=135 độ

b: ΔBAN cân tại B

mà BD là phân giác

nên BD vuông góc AN

 

3 tháng 4 2023

làm câu c đi 

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AMa) Chứng minh AB = BCb) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyếnMC với đường tròn (C là tiếp điểm).a) Chứng minh OM // BCb) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hànhc) Chứng minh...
Đọc tiếp

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng
Mọi người ơi giúp e vsssssssssssssss.........E hỏi mà hong ai chỉ T.T

2
21 tháng 3 2020

ko làm mà muốn ăn thì chỉ có ăn cứt ăn đầu buồi nhá!

21 tháng 3 2020

Bài 1:

a,

OM là đường trung bình  của tam giác BAC => OM = 1/2*BC

OM = 1/2*AB

=> AB=BC (đpcm).

b, 

Tam giác ABC đều => BC = 2*r(O)

MN là đường trung bình của tam giác ABC => MN = 1/2*AB = r(O) = OM = OB =BN => BOMN là hình thoi.