Tính : 1.4+2.5+3.6+4.7+...+100.103
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=1.4+2.5+3.6+...+100.103\)
\(=1\left(2.2\right)+2\left(3+2\right)+3\left(4+2\right)+...+100\left(101+2\right)\)
\(=1.2+2.3+3.4+...+100.101+\left(1.2+2.2+3.2+...+100.2\right)\)
\(=1.2+2.3+3.4+...+100.101+2\left(1+2+3+...+100\right)\)
\(=1.2+2.3+3.4+...+100.101+2.100\left(100+1\right):2\)
\(=1.2+2.3+3.4+...+100.101+10100\)
Đặt \(B=1.2+2.3+3.4+...+100.101\)
\(\Rightarrow3B=1.2.3+2.3.3+3.4.3+100.101.3\)
\(\Rightarrow3B=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+100.101\left(102-99\right)\)
\(\Rightarrow3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+100.101.102-99.100.101\)
\(\Rightarrow3B=100.101.102\)
\(\Rightarrow B=343400\)
Khi đó \(A=343400=10100=333300\)
Đặt A = 1.4 + 2.5 + 3.6 + 4.7 + ... + 100.103
3A = 3.(1.2 + 2.3 + 3.4 + ... + 100.101] + 3.(2 + 4 + 6 + ... + 200)
= 1.2.3 + 2.3.3 + 3.4.3 + ... + 100.101.3 + 3.(2 + 4 + 6 + ... + 200)
\(\Rightarrow\) A = 100.101.105:3 = 353500
Đặt A = 1.4 + 2.5 + 3.6 + ... + 100.103
= 1.(2 + 2) + 2.(3 + 2) + 3.(4 + 2) +.... + 100.(101 + 2)
= 1.2 + 2.3 + 3.4 + ... + 100.101 + (1.2 + 2.2 + 3.2 + ... + 100.2)
= 1.2 + 2.3 + 3.4 + ... + 100.101 + 2(1 + 2 + 3 + .... + 100)
= 1.2 + 2.3 + 3.4 + .... + 100.101 + 2.100.(100 + 1) : 2
= 1.2 + 2.3 + 3.4 + ... + 100.101 + 10100
Đặt B = 1.2 + 2.3 + 3.4 + .... + 100.101
=> 3B = 1.2.3 + 2.3.3 + 3.4.3 + .... + 100.101.3
=> 3B = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 100.101.(102 - 99)
=> 3B = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 100.101.102 - 99.100.101
=> 3B = 100.101.102
=> B = 343400
Khi đó A = 343400 - 10100 = 333300
\(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)
\(3B=5\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{100.103}\right)\)
\(3B=5\left(1-\frac{1}{103}\right)\)
\(3B=5.\frac{102}{103}\)
\(3B=\frac{510}{103}\)
\(\Rightarrow B=\frac{170}{103}\)
Ta có:
B=\(\frac{5}{1.4}\)+\(\frac{5}{4.7}+.....+\frac{5}{100.103}\)
B=\(\frac{5}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+....+\frac{3}{100.103}\right)\)
B=\(\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{100}-\frac{1}{103}\right)\)
B=\(\frac{5}{3}\left(1-\frac{1}{103}\right)\)
B=\(\frac{5}{3}.\frac{102}{103}\)
B=\(\frac{170}{103}\)
Vậy B=\(\frac{170}{103}\)
nhớ k
\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\)
\(=\frac{4-1}{1.4}+\frac{7-4}{4.7}+...+\frac{103-100}{100.103}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\)
\(=\frac{102}{103}\)
a) \(A=\dfrac{5}{1.4}+\dfrac{5}{4.7}+...+\dfrac{5}{100.103}\)
\(\Leftrightarrow A=\dfrac{5}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\right)\)
\(\Leftrightarrow\dfrac{5}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)
\(\Leftrightarrow\dfrac{5}{3}\left(1-\dfrac{1}{103}\right)\)
\(\Leftrightarrow\dfrac{5}{3}.\dfrac{102}{103}\)
\(\Leftrightarrow\) \(A=\dfrac{170}{103}\)
b) \(B=\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{2499}\)
\(B=\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{49.51}\)
\(B=\dfrac{1}{2}\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{49.51}\right)\)
\(B=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)
\(B=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{51}\right)\)
\(B=\dfrac{1}{2}.\dfrac{16}{51}\)
\(B=\dfrac{8}{51}\)
A = \(\dfrac{5}{1.4}+\dfrac{5}{4.7}+...+\dfrac{5}{100.103}\)
A = \(\dfrac{5}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\right)\)
A = \(\dfrac{5}{3}.\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-...-\dfrac{1}{100}+\dfrac{1}{100}-\dfrac{1}{103}\right)\)
A = \(\dfrac{5}{3}.\left[\dfrac{1}{1}-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-\left(\dfrac{1}{7}-\dfrac{1}{7}\right)-...-\left(\dfrac{1}{100}-\dfrac{1}{100}\right)-\dfrac{1}{103}\right]\)
A = \(\dfrac{5}{3}.\left[\dfrac{1}{1}-0-0-...-0-\dfrac{1}{103}\right]\)
A = \(\dfrac{5}{3}.\left[\dfrac{1}{1}-\dfrac{1}{103}\right]\)
A = \(\dfrac{5}{3}.\left[\dfrac{103}{103}-\dfrac{1}{103}\right]\)
A = \(\dfrac{5}{3}.\dfrac{102}{103}\)
A = \(\dfrac{170}{103}\)
B = \(\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{2499}\)
B = \(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{49.51}\)
B = \(\dfrac{1}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{49.51}\right)\)
B = \(\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-...-\dfrac{1}{49}+\dfrac{1}{49}-\dfrac{1}{51}\right)\)
B = \(\dfrac{1}{2}.\left[\dfrac{1}{3}-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-\left(\dfrac{1}{7}-\dfrac{1}{7}\right)-...-\left(\dfrac{1}{49}-\dfrac{1}{49}\right)-\dfrac{1}{51}\right]\)
B = \(\dfrac{1}{2}.\left[\dfrac{1}{3}-0-0-...-0-\dfrac{1}{51}\right]\)
B = \(\dfrac{1}{2}.\left[\dfrac{1}{3}-\dfrac{1}{51}\right]\)
B = \(\dfrac{1}{2}.\left[\dfrac{17}{51}-\dfrac{1}{51}\right]\)
B = \(\dfrac{1}{2}.\dfrac{16}{51}\)
B = \(\dfrac{8}{51}\)
program TinhTongDaySo;
var n, i, s: Integer;
begin
// Yêu cầu người dùng nhập vào số nguyên n từ bàn phím
write('Nhap vao n: ');
readln(n);
// In ra thông tin dãy số từ 1 đến n
writeln('Day so tu 1 den ', n, ':');
// Khởi tạo biến s để tính tổng dãy số
s := 0;
// Dùng vòng lặp for để in ra dãy số từ 1 đến n và tính tổng
for i := 1 to n do
begin
write(i, ' '); // In ra dãy số từ 1 đến n
s := s + i; // Tính tổng dãy số
end;
// In ra tổng dãy số
writeln('Tong day so: ', s);
// Dừng chương trình để người dùng có thể xem kết quả
readln;
end.
Ta có : \(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{2}+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(-\frac{1}{4}+\frac{1}{4}\right)+...+\left(-\frac{1}{99}+\frac{1}{99}\right)-\frac{1}{100}\)
\(A=\frac{1}{2}+0+0+..+0-\frac{1}{100}\)
\(A=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
\(B=\frac{5}{1.4}+\frac{5}{4.7}+..+\frac{5}{100.103}\)
\(B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\)
\(B=1+\left(-\frac{1}{4}+\frac{1}{4}\right)+\left(-\frac{1}{7}+\frac{1}{7}\right)+...+\left(-\frac{1}{100}+\frac{1}{100}\right)-\frac{1}{103}\)
\(B=1+0+0+...+0-\frac{1}{103}\)
\(B=1-\frac{1}{103}=\frac{102}{103}\)
So sánh : A < B vì 49/100 < 102/103 (49.103 < 102 . 100)
\(1\cdot4+2\cdot5+...+100\cdot103\)
\(=1\left(1+3\right)+2\left(2+3\right)+...+100\left(100+3\right)\)
\(=3\left(1+2+...+100\right)+\left(1^2+2^2+...+100^2\right)\)
\(=\dfrac{3\cdot100\cdot101}{2}+\dfrac{100\left(100+1\right)\left(2\cdot100+1\right)}{6}\)
\(=3\cdot50\cdot101+338350=353500\)