Bài 21 : Tìm ƯCLN của 56 và 140 ; 15 và 19
Có hai số nguyên tố cùng nhau nào mà cả hai đều là hợp số không?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e) \(24=2^3.3\)
\(84=2^2.3.7\)
\(180=2^2.3^2.5\)
\(\RightarrowƯCLN\left(24;84;180\right)=2^2.3=12\)
b) \(24=2^2.3\)
\(36=2^2.3^2\)
\(\RightarrowƯCLN\left(24;36\right)=2^2.3=12\)
g) \(56=2^3.7\)
\(140=2^2.5.7\)
\(\RightarrowƯCLN\left(56;140\right)=2^2.7=28\)
h) \(12=2^2.3\)
\(14=2.7\)
\(8=2^3\)
\(20=2^2.5\)
\(\RightarrowƯCLN\left(12;14;8;20\right)=2\)
d) \(6=2.3\)
\(8=2^3\)
\(18=2.3^2\)
\(\RightarrowƯCLN\left(6;8;18\right)=2\)
k) \(7=7\)
\(9=3^2\)
\(12=2^2.3\)
\(21=3.7\)
\(\RightarrowƯCLN\left(7;9;12;21\right)=1\)
– Phân tích ra thừa số nguyên tố: 56 = 23.7; 140 = 22.5.7
– Các thừa số nguyên tố chung là 2; 7.
⇒ ƯCLN (56, 140) = 22 .7 = 28 (số mũ của 2 nhỏ nhất là 2; số mũ của 7 đều bằng 1).
a: UC(56;140;84)={1;2;4;7;14;28}
BC(56;140;84)={420;840;...}
b: UCLN(56;140;84)=28
BCNN(56;140;84)=420
56 và 140
56 = 23 . 7
140 = 22 . 5 . 7
vậy ƯCLN của 56 và 140 là 28 (22 . 7 = 28)
60 và 180
60 = 22 . 3 . 5
180 = 22 . 32 . 5
vậy ƯCLN của 60 và 180 là 60 (22 . 3 . 5 = 60)
15 và 19
15 = 3. 5
19 = 1 . 19
vậy ƯCLN của 15 và 19 là 1
a) 56 | 2 140 | 2
28 | 2 70 | 2
14 | 2 35 | 5
7 | 7 7 | 7
1 1
56 = 23 . 7 140 = 22 . 5 . 7
=> UCLN( 56;140 ) = 22 . 7 = 28
Tương tự b
a ) Ta có 56 = 23 . 7; 140 = 22 . 5 . 7. Do đó ƯCLN (56, 140) = 22 . 7 = 28;
b ) Vì 180 ⋮ 60 nên ƯCLN (60, 180) = 60
a) 56 = 2 ^ 3 . 7
140 = 2 ^ 2 . 5 . 7
b) UCLN ( 56 , 140 ) = 2 ^ 2 . 5 = 20
c) BCNN ( 56 , 140 ) = 2 ^ 3 . 5 . 7 = 280
Duyệt đi bạn nhé , thanks !