K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

nên ADHE là hình chữ nhật

=>AH=DE

Xét ΔABH vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\)

\(AD\cdot AB+AE\cdot AC=AH^2+AH^2\)

\(=2AH^2=2DE^2\)

1: Xét ΔABD vuông tại D và ΔACE vuông tại E có 

\(\widehat{A}\) chung

Do đó: ΔABD∼ΔACE

Suy ra: AB/AC=AD/AE
hay \(AB\cdot AE=AC\cdot AD\)

2: Xét ΔADE và ΔABC có 

AD/AB=AE/AC

\(\widehat{DAE}\) chung

Do đó:ΔADE∼ΔABC

11 tháng 3 2017

hình như đề bài sai 

11 tháng 3 2017

Đâu có sai đâu bạn

15 tháng 5 2021

a) Xét ΔABD và ΔEBD có

BD là phân giác => góc ABD = góc EBD 

BD chung

Góc BAD = góc BED =90o

=> ΔABD = ΔEBD (ch-gn)

=>AD=ED(2 cạnh tương ứng)

b) xét ΔADF và ΔEDC có

Góc DAF= góc DEC=90o

AD=ED (cmt)

Góc ADF=EDC( đối đỉnh)

=>ΔADF = ΔEDC (gcg)

=> AF=EC(2 cạnh tương ứng)

c) ta có ΔABD = ΔEBD (cmt)

=> AB = EB (2 cạnh tương ứng)

=> ΔBAE cân tại B 

=> \(\widehat{BAE}=\widehat{BEA}=\)\(\dfrac{180 - \widehat{B}}{2}\)(1)

ta lại có AF=EC (cmt)

=> AB+AF=BE+EC

=> BF=BC

=> ΔBFC cân tại B 

=>\(\widehat{BFC}=\widehat{BCF}=\dfrac{180-\widehat{B}}{2}\)(2)

từ (1) và (2) => \(\widehat{BFC}\)=\(\widehat{BAE}\)  mà 2 góc ở vị trí đồng vị 

=> AE//FC

16 tháng 5 2021

cảm ơn ok

a: Xét ΔABD và ΔAED có 

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

10 tháng 3 2020

a, Ta có:

góc DAB = góc EAC( Vì cùng phụ góc BAC)

AD= AC

AB=AE

Nên tam giác ABD = tam giác AEC

Vây BD = CEb,

Ta có: ACNB là hình bình hành nên góc ACN + góc BAC = 180độ (1)

Mặt khác ta có : 2( góc DAB +góc BAC) = 2. 90 độ = 180độ

Nên góc DAB + góc EAC + góc BAC + góc BAC = 180 độ

Suy ra DAE + BAC = 180 độ (2)

Từ (1) và (2) ta đc góc DAE = góc ACN

Mà AD = AC; AB= CN nên tam giác ADE = Tam giác cân

c, Ta có: góc NAC = góc ADE ( cmt )

Mà góc NAC + góc DAM = 90 độ nên ADE + góc DAM = 90 độ

Vậy DIA = 90 độ

Áp dụng pytago ta có:\(\frac{AD^2+IE^2}{DI^2+AE^2}=\frac{\left(AD^2+DI^2\right)+\left(AE^2-AI^2\right)}{DI^2+AE^2}=1\)

2 tháng 3 2021

AP<AQ ở đâu ạ