K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2015

Có 120 cách cho mỗi số 3; 4; 5; 6 đứng đầu, => có 120 . 4 = 480 (số)

16 tháng 1 2018

Đáp án D.

Gọi số cần tìm có dạng ,

Chọn f: có 3 cách

Chọn  b,c,d,e :có cách

Vậy có số

NV
20 tháng 4 2023

Gọi số cần lập có dạng \(\overline{abc}\)

Do \(300< \overline{abc}< 500\Rightarrow a\) có 2 cách chọn (3 hoặc 4)

Bộ b, c có \(A_5^2=20\) cách chọn và hoán vị

\(\Rightarrow2.20=40\) số thỏa mãn

20 tháng 4 2023

Cảm ơn ạ

8 tháng 8 2019
https://i.imgur.com/ZuQRJlA.jpg

gọi số cần tìm là abcdef

a có 4 cách chọn

+ với a = { 1,2,3}

b có 5 cách chọn

c có 4 cách chọn

d có 3 cách chọn

e có 2 cách chọn

f có 1 cách chọn

\(\Rightarrow\) có 360 số

+ với a = 4

b có 3 cách chọn

b={ 1,2}

c có 4 cách chọn

d có́ 3 cách chọn

e có 2 cách choṇ

f có 1 cách chọn

b =3

c có 1 cách chọn

d có 3 cách chọn

e có 2 cách chọn

f có 1 cách chọn

\(\Rightarrow\)có 54 số

vậy có 360 + 54 = 414 số

28 tháng 11 2021

* Lập số có 6 chữ số đôi một khác nhau có: 6! cách.

+ Chữ só 3,4 không đứng cạnh nhau nên ta có phủ định là 3,4 luôn đứng cạnh nhau có : 2.5! cách.

Vậy số có 6 chữ số khác nhau và chữ số 3,4 không đứng cạnh nhau là: 

 n = 6! - 2.5! = 480 cách.

4 tháng 12 2019

Đáp án B    

Số cần lập là  a b c d e f , ta có a + b + c – 1 = d + e + f <=> 20 = 2(d + e + f) <=> d + e + f = 10

Với mỗi  f ∈ { 1 ; 3 ; 5 }  => d, e có 4 cách chọn, suy ra  a b c d e f  4.3! = 24 cách chọn

Suy ra có 3.24 = 72 số có thể lập thỏa mãn đề bài.

2 tháng 2 2019

Đáp án B  

Số cần lập là a b c d e f ¯ ,  ta có a + b + c − 1 = d + e + f ⇔ 20 = 2 d + e + f ⇔ d + e + f = 10  

Với mỗi f ∈ 1 ; 3 ; 5 ⇒ d , e  có 4 cách chọn, suy ra a b c d e f ¯ có 4.3 ! = 24  cách chọn

Suy ra có 3.24 = 72  số có thể lập thỏa mãn đề bài

NV
9 tháng 11 2021

a. 

\(A_6^3=120\) số

b.

Có \(6.6.6.6=1296\) số

17 tháng 5 2016

Ta có 1+2+3+4+5+6+ =21 Vậy tổng của 3 chữ số đầu là 10

Dễ thấy       1+3+6 = 1+4+5 = 2+3+5

Vậy có 3 cách chọn 3 nhóm 3 chữ số đầu (1,3,6 hoặc 1,4,5 hoặc 2,3,5)

Với 1 cách chọn nhóm 3 chữ số thì có 3! cách để lập ra số \(\overline{a_1a_2a_3}\)

Với 3 số còn lại thì có 3! cách để lập ra số \(\overline{a_4a_5a_6}\)

(ở đây \(\overline{a_1a_2a_3a_4a_5a_6}\) là số thỏa mãn yêu cầu đề ra)

Theo quy tắc nhân ta có 3.6.6 = 108

Vậy có 108 số cần tìm

16 tháng 5 2020

Em thấy như này còn thiều trường hợp hay sao ý ạ tại ba số nhỏ hơn đâu nhất thiết phải bằng 10 ạ 123 vs 345 vẫn tỏa mãn đấy chứ ạ.Có thể cho em là mình sai ở đâu hay kế quả thế nào được không ạ??

11 tháng 6 2017

Gọi  là số cần lập 1 + a2 + a3 = 10

Theo bài ra ta có:  (1)

 và đôi một khác nhau nên

 a1,a2,a3,a4,a5,a6 = 1 + 2 + 3 + 4 + 5 + 6 =21

 

 (2)

Từ (1), (2) suy ra: 1 + a2 + a3 = 10  

Phương trình này có các bộ nghiệm là: ( a­1 , a2  , a3 ) = (1,3,6); (1,4,5); (2,3,5)

Với mỗi bộ ta có 3!.3!=36  số.

Vậy có cả 3.36=108  số cần lập.

Chọn C.