Cho tam giác ABC, phân giác AD. 2 điểm P và Q nằm trên AD sao cho \(\widehat{ABP}=\widehat{CBQ}\). Gọi E và F lần lượt là hình chiếu của P trên AB và AC. H là hình chiếu của Q trên BC. K là hình chiếu của H trên EF. Chứng minh rằng KH là phân giác \(\widehat{BKC}\)?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét tứ giác AMDN có
góc AMD=góc AND=góc MAN=90 độ
AD là phan giác
=>AMDN là hình vuông
2: BC=căn 3^2+4^2=5cm
AD là phân giác
=>DB/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=5/7
=>BD=15/7cm; CD=20/7cm
a.
Dễ thấy \(\Delta COF=\Delta COH\left(ch-cgv\right)\Rightarrow CF=CH\Rightarrow\Delta CFH\) cân tại C.
\(\Rightarrow\widehat{CFH}=\widehat{CHF}\left(1\right)\)
Kẻ \(IG//AC\left(G\in FH\right)\)
\(\Rightarrow\widehat{IGF}=\widehat{CHF}\left(2\right)\)
Từ (1);(2) \(\Rightarrow\Delta IGF\) cân tại I.\(\Rightarrow IG=FI\) mà \(FI=AH\Rightarrow GI=AH\)
Xét \(\Delta AHK\) và \(\Delta IGK\) có:
\(\widehat{HAI}=\widehat{AIG}\)
\(AH=IG\)
\(\widehat{AHG}=\widehat{HGI}\)
\(\Rightarrow\Delta AHK=\Delta IGK\left(g.c.g\right)\Rightarrow AK=KI\)
b.
Hạ \(OE\perp AB\left(E\in AB\right)\)
Do O là tâm đường tròn nội tiếp tam giác ABC nên khoảng cách từ O đến mỗi cạnh là bằng nhau.
\(\Rightarrow OE=OH=OF\)
Khi đó:
\(\Delta AOE=\Delta AOH\left(ch.cgv\right)\Rightarrow EA=HA\)
\(\Delta BOE=\Delta BOF\left(ch.cgv\right)\Rightarrow BE=BF\)
Ta có:
\(BA=BE+EA=BF+AH=BF+FI=BI\)
\(\Rightarrow\Delta ABI\) cân tại B.
Do \(KA=KI\Rightarrow BK\) trung tuyến mà BO là phân giác nên B,O,K thẳng hàng.
Dựng đói xứng là ra, Có trong sách nâng cao lớp 8 bài đối xứng trục, chỉ thay đổi một chút