K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 8 2024

Min P em có thể tự tìm đơn giản bằng AM-GM

Min R cũng khá đơn giản:

Đặt \(\left(\sqrt[3]{a};\sqrt[3]{b};\sqrt[3]{c}\right)=\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}0\le x;y;z\le1\\x^3+y^3+z^3=\dfrac{9}{8}\end{matrix}\right.\)

\(R=\dfrac{1}{1+x}+\dfrac{1}{1+y}+\dfrac{1}{1+z}\ge\dfrac{9}{3+x+y+z}\ge\dfrac{9}{3+\sqrt[3]{9\left(x^3+y^3+z^3\right)}}=\dfrac{6}{2+\sqrt[3]{3}}\)

Xét \(Q=x+y+z\)

Do \(\left(x+y+z\right)^3\ge x^3+y^3+z^3=\dfrac{9}{8}\Rightarrow x+y+z\ge\sqrt[3]{\dfrac{9}{8}}>1\Rightarrow Q-1>0\)

\(x^3+y^3+z^3=\left(x+y+z\right)^3-3\left(x+y+z\right)\left(xy+yz+zx\right)+3xyz\)

\(\Rightarrow\dfrac{9}{8}=Q^3-3Q\left(xy+yz+zx\right)+3xyz\)

\(\Rightarrow\dfrac{9}{8}=Q^3-3\left(Q-1\right)\left(xy+yz+zx\right)-3\left(xy+yz+zx-xyz\right)\)

Do \(0\le x;y;z\le1\Rightarrow\left(1-x\right)\left(1-y\right)\left(1-z\right)\ge0\)

\(\Rightarrow xy+yz+zx-xyz\ge Q-1\)  (1)

\(\Rightarrow xy+yz+zx\ge xyz+Q-1\ge Q-1\) (2)

(1);(2)\(\Rightarrow\dfrac{9}{8}\le Q^3-3\left(Q-1\right)\left(Q-1\right)-3\left(Q-1\right)\)

\(\Rightarrow8Q^3-24Q^2+24Q-9\ge0\)

\(\Rightarrow\left(2Q-3\right)\left(4Q^2-6Q+3\right)\ge0\)

Do \(4Q^2-6Q+3=4\left(Q-\dfrac{3}{4}\right)^2+\dfrac{3}{4}>0;\forall Q\)

\(\Rightarrow2Q-3\ge0\Rightarrow Q\ge\dfrac{3}{2}\)

\(Q_{min}=\dfrac{3}{2}\) khi \(\left(x;y;z\right)=\left(0;1;\dfrac{1}{2}\right)\) và hoán vị hay \(\left(a;b;c\right)=\left(0;1;\dfrac{1}{8}\right)\) và hoán vị

12 tháng 4 2020

Lm hộ mình nha bạn

17 tháng 4 2020

Mục tiêu -500 sp mong giúp đỡ

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Đổi 60g=0,06kg, 50g=0,05kg

Lượng đường cần cho x chiếc bánh nướng là 0,06x kg

Lượng đường cần cho y chiếc bánh dẻo là 0,05y kg

Vì lượng đường đã nhập về là 500kg và lượng đường sản xuất bánh không vượt quá lượng đường đã nhập về nên ta có:

\(0,06x + 0,05y \le 500\)

26 tháng 11 2021

THAM KHẢO

 

Thuật toán:

B1. Nhập ba số dương a,b,c

B2. Nếu a+b>c và b+c>a và c+a>b thì in ra màn hình a,b,c là ba cạnh của tam giác. Ngược lại in ra a,b,c không là ba cạnh của tam giác.

B3. Kết thúc.

Chương trình:

var a,b,c: real;

begin

writeln('Nhap ba canh lan luot: '); read(a,b,c);

if (a<0) or (b<0) or (c<0) then

repeat

writeln('Khong hop le. Nhap lai ba canh lan luot: '); read(a,b,c);

until (a>0) and (b>0) and (c>0);

if (a+b>c) and (b+c>a) and (c+a>b) then writeln('Ba so nay la do dai ba canh tam giac') else writeln('Ba so nay khong la ba canh cua tam giac');

end.

26 tháng 11 2021

điều kiện là vậy à bạn ^^?

28 tháng 9 2016

Áp dụng bđt \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\) ta có 

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2\)

28 tháng 9 2016

Bài 1. Đặt \(a=\sqrt{x+3},b=\sqrt{x+7}\)

\(\Rightarrow a.b+6=3a+2b\) và \(b^2-a^2=4\)

Từ đó tính được a và b

Bài 2. \(\frac{2x-1}{x^2}+\frac{y-1}{y^2}+\frac{6z-9}{z^2}=\frac{9}{4}\)

\(\Leftrightarrow\frac{2}{x}-\frac{1}{x^2}+\frac{1}{y}-\frac{1}{y^2}+\frac{6}{z}-\frac{9}{z^2}-\frac{9}{4}=0\)

Đặt \(a=\frac{1}{x},b=\frac{1}{y},c=\frac{1}{z}\)

Ta có \(2a-a^2+b-b^2+6c-9c^2-\frac{9}{4}=0\)

\(\Leftrightarrow-\left(a^2-2a+1\right)-\left(b^2-b+\frac{1}{4}\right)-\left(9c^2-6c+1\right)=0\)

\(\Leftrightarrow-\left(a-1\right)^2-\left(b-\frac{1}{2}\right)^2-\left(3c-1\right)^2=0\)

Áp dụng tính chất bất đẳng thức suy ra a = 1 , b = 1/2 , c = 1/3

Rồi từ đó tìm được x,y,z

26 tháng 8 2015

Bài 1. Từ giả thiết, với chú ý abc=1, ta suy ra \(\left(a+b\right)+c=\frac{a+b}{ab}+\frac{1}{c}=c\left(a+b\right)+\frac{1}{c}\to\left(a+b\right)\left(c-1\right)=\frac{c^2-1}{c}\to\left(c-1\right)\left(a+b-\frac{c+1}{c}\right)=0\)

\(\to\frac{\left(c-1\right)\left(ac+bc-c-1\right)}{c}=0\to\left(c-1\right)\left(\frac{1}{b}-1+c\left(b-1\right)\right)=0\to\left(c-1\right)\left(b-1\right)\left(c-\frac{1}{b}\right)=0\)

\(\to\left(c-1\right)\left(b-1\right)\left(a-1\right)=0\). Vậy ba số a,b,c có 1 số bằng 1.

 

Bài 2. Từ giả thiết ta suy ra\(x^3+2xy^2+\left(x^2+8y^2\right)y=0\to x^3+x^2y+2xy^2+8y^3=0\to\)

Nếu y=0 thì x=0, khi đó không thỏa mãn \(x^2+8y^2=12\) (loại).

Với y khác 0, chia cả hai vế cho \(y^3,\) ta được

\(t^3+t^2+2t+8=0\to\left(t+2\right)\left(t^2-t+4\right)=0\to t=-2\to x=-2y\)

Thế vào phương trình thứ hai ta được \(12y^2=12\to y=\pm1\to x=\mp2.\)

Vậy ta có hai cặp nghiệm \(\left(x,y\right)=\left(2,-1\right);\left(-2;1\right).\)

 

7 tháng 10 2015

Bài 1. Từ giả thiết, với chú ý abc=1, ta suy ra $\left(a+b\right)+c=\frac{a+b}{ab}+\frac{1}{c}=c\left(a+b\right)+\frac{1}{c}\to\left(a+b\right)\left(c-1\right)=\frac{c^2-1}{c}\to\left(c-1\right)\left(a+b-\frac{c+1}{c}\right)=0$(a+b)+c=a+bab +1c =c(a+b)+1c →(a+b)(c−1)=c2−1c →(c−1)(a+b−c+1c )=0

$\to\frac{\left(c-1\right)\left(ac+bc-c-1\right)}{c}=0\to\left(c-1\right)\left(\frac{1}{b}-1+c\left(b-1\right)\right)=0\to\left(c-1\right)\left(b-1\right)\left(c-\frac{1}{b}\right)=0$→(c−1)(ac+bc−c−1)c =0→(c−1)(1b −1+c(b−1))=0→(c−1)(b−1)(c−1b )=0

$\to\left(c-1\right)\left(b-1\right)\left(a-1\right)=0$→(c−1)(b−1)(a−1)=0. Vậy ba số a,b,c có 1 số bằng 1.

 

Bài 2. Từ giả thiết ta suy ra$x^3+2xy^2+\left(x^2+8y^2\right)y=0\to x^3+x^2y+2xy^2+8y^3=0\to$x3+2xy2+(x2+8y2)y=0→x3+x2y+2xy2+8y3=0→

Nếu y=0 thì x=0, khi đó không thỏa mãn $x^2+8y^2=12$x2+8y2=12 (loại).

Với y khác 0, chia cả hai vế cho $y^3,$y3, ta được

$t^3+t^2+2t+8=0\to\left(t+2\right)\left(t^2-t+4\right)=0\to t=-2\to x=-2y$t3+t2+2t+8=0→(t+2)(t2−t+4)=0→t=−2→x=−2y

Thế vào phương trình thứ hai ta được $12y^2=12\to y=\pm1\to x=\mp2.$12y2=12→y=±1→x=∓2.

Vậy ta có hai cặp nghiệm $\left(x,y\right)=\left(2,-1\right);\left(-2;1\right).$(x,y)=(2,−1);(−2;1).