Tính biểu thức: 1x2+2x3+3x4+...+25x26
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1.2+2.3+...+25.26\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+25.26.\left(27-24\right)\)
\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+25.26.27-24.25.26\)
\(\Rightarrow3A=25.26.27\)
\(\Rightarrow A=25.26.9\)
Đặt A = 1x2+2x3+3x4+...+25x26+26x27
3A = 1 x 2 x 3 - 1 x 2 x 3 + 2 x 3 x 4 -2 x 3 x 4 + ..... + 26 x 27 x 28
3A = 26 x 27 x 28
A= \(\text{ }\frac{\text{26 x 27 x 28}}{3}=6552\)
Đặt A = 1×2 + 2×3 + 3×4 + ... + 20×21
3A = 1×2×3 + 2×3×(4-1) + 3×4×(5-2) + ... + 20×21×(22-19)
= 1×2×3 - 1×2×3 + 2×3×4 - 2×3×4 + 3×4×5 - ... - 19×20×21 + 20×21×22
= 20×21×22
A = 20×21×22 : 3
= 20×22×7
= 3080
Ta có:\(A=\frac{9}{1.2}+\frac{9}{2.3}+...+\frac{9}{98.99}+\frac{9}{99.100}\)
\(=9\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(=9\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=9\left(1-\frac{1}{100}\right)\)
\(=9.\frac{99}{100}=\frac{891}{100}\)
ta có\(A=\frac{4}{1\cdot2}+\frac{4}{2\cdot3}+\frac{4}{3\cdot4}+...+\frac{4}{2014\cdot2015}\)
\(=4\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2014\cdot2015}\right)\)
\(=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\right)\)
\(=4\left(1-\frac{1}{2015}\right)\)
\(=4\cdot\frac{2014}{2015}\)
\(=\frac{8056}{2015}\)
VẬY A=\(\frac{8056}{2015}\)
Đặt A = 1x2+2x3+3x4+...+25x26
\(3A=1\times2\times3-1\times2\times3+2\times3\times4-2\times3\times4+.....+25\times26\times27\)
\(3A=25\times26\times27\)
\(A=\frac{25\times26\times27}{3}=5850\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{19.20}\)
\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{19.20}\right)\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2.\left(1-\frac{1}{20}\right)\)
\(=2.\frac{19}{20}=\frac{19}{10}\)
\(\frac{2019}{1\times2}+\frac{2019}{2\times3}+\frac{2019}{3\times4}+...+\frac{2019}{2018\times2019}\)
\(=2019\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2018\times2019}\right)\)
\(=2019\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(=2019\left(1-\frac{1}{2019}\right)\)
\(=2019\left(\frac{2019}{2019}-\frac{1}{2019}\right)\)
\(=2019\times\frac{2018}{2019}\)\(=\frac{2019\times2018}{2019}=2018\)
\(\frac{5}{3\times4}+\frac{5}{4\times5}+\frac{5}{5\times6}+...+\frac{5}{25\times26}+\frac{5}{26\times27}\)
\(=\frac{4-3}{3\times4}+\frac{5-4}{4\times5}+\frac{6-5}{5\times6}+...+\frac{26-25}{25\times26}+\frac{27-26}{26\times27}\)
\(=5\times\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{25}-\frac{1}{26}+\frac{1}{26}-\frac{1}{27}\right)\)
\(=5\times\left(\frac{1}{3}-\frac{1}{27}\right)\)
\(=5\times\frac{8}{27}=\frac{40}{27}\)
\(\frac{5}{3.4}+\frac{5}{4.5}+\frac{5}{5.6}+...+\frac{5}{25.26}+\frac{5}{26.27}\)
\(=5\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{25}-\frac{1}{26}+\frac{2}{26}-\frac{1}{27}\right)\)
\(=5\left(\frac{1}{3}-\frac{1}{27}\right)\)
\(=\frac{40}{27}\)
S = 1 x 2+2 x 3+3 x 4+...+25 x 26
3S = 1 x 2 x 3 +2 x 3 x (4 - 1) +3 x 4 x (5 - 2) +...+25 x 26 x (27 - 24)
3S = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + ... + 25 x 26 x 27 - 24 x 25 x 26
3S = 25 x 26 x 27
3S = 17550
S = 5850