Cho x-y ⋮ 7 với (x,y ϵ Z)
Chứng tỏ rằng các biểu thức sau đây đều chia hết cho 7
a. 22x-y
b.8x+20y
c.11x+10y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=7^{13}+7^{14}+7^{15}+7^{16}+...+7^{100}\)
\(A=\left(7^{13}+7^{14}\right)+\left(7^{15}+7^{16}\right)+...+\left(7^{99}+7^{100}\right)\)
\(A=7^{13}\left(1+7\right)+7^{15}\left(1+7\right)+...+7^{99}\left(1+7\right)\)
\(A=7^{13}.8+7^{15}.8+...+7^{99}.8\)
\(A=8.\left(7^{13}+7^{15}+...+7^{99}\right)\)
⇒ \(A⋮8\)
Vậy A chia hết cho 8 (đpcm)
a) A = 7¹³ + 7¹⁴ + 7¹⁵ + 7¹⁶ + ... + 7⁹⁹ + 7¹⁰⁰
= (7¹³ + 7¹⁴) + (7¹⁵ + 7¹⁶) + ... + (7⁹⁹ + 7¹⁰⁰)
= 7¹³.(1 + 7) + 7¹⁵.(1 + 7) + ... + 7⁹⁹.(1 + 7)
= 7¹³.8 + 7¹⁵.8 + ... + 7⁹⁹.8
= 8.(7¹³ + 7¹⁵ + ... + 7⁹⁹) ⋮ 8
Vậy A ⋮ 8
b) B = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰⁰
= 2 + 2² + 2³ + 2⁴ + 2⁵ + 2⁶ + 2⁷ + 2⁸ + ... + 2¹⁹⁷ + 2¹⁹⁸ + 2¹⁹⁹ + 2²⁰⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁹⁷ + 2¹⁹⁸ + 2¹⁹⁹ + 2²⁰⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + 2¹⁹⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + ... + 2¹⁹⁶.30
= 30.(1 + 2⁴ + ... + 2⁹⁶)
= 5.6.(1 + 2⁴ + ... + 2¹⁹⁶) ⋮ 5
Vậy B ⋮ 5
\(A=7^{10}+7^9-7^8\)
\(A=7^8\left(7^2+7-1\right)=7^8\cdot55\)
\(A=7^8\cdot5\cdot11\)
Vậy A chia hết cho 11
A = 710 + 79 - 78
A = 78 . (72 + 7 - 1)
A = 78 . (49 + 7 - 1)
A = 78 . 55
A = 78 . 5 . 11 chia hết cho 11
=> đpcm
\(P=n^3\left(n^2-7\right)^2-36\)
\(P=n\left[n\left(n^27\right)^2-36\right]\)
\(P=n\left[\left(n^3-7n\right)^2-6^2\right]\)
\(P=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(P=\left(n-3\right)\left(x-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
M luôn luôn chia hết cho 3 , cho 5 , cho 7. Các số này đôi một nguyên tố cùng nhau nên B chia hết cho 105
Bài 4 :
Thay x=y+5 , ta có :
a ) ( y+5)*(y5+2)+y*(y-2)-2y*(y+5)+65
=(y+5)*(y+7)+y^2-2y-2y^2-10y+65
=y^2+7y+5y+35-y^2-2y-2y^2-10y+65
= 100
Bài 5 :
A = 15x-23y
B = 2x-3y
Ta có : A-B
= ( 15x -23y)-(2x-3y)
=15x-23y-2x-3y
=13x-26y
=13x*(x-2y) chia hết cho 13
=> Nếu A chia hết cho 13 thì B chia hết cho 13 và ngược lại
Giả sử a - b chia hết cho 6, tức là tồn tại số nguyên k sao cho a - b = 6k. (1)
a) Chứng minh a + 5b chia hết cho 6:
Ta có:
a + 5b = (a - b) + 6b.
Từ (1), ta thay thế a - b = 6k vào biểu thức trên:
a + 5b = 6k + 6b = 6(k + b).
Vì k + b là một số nguyên, nên a + 5b chia hết cho 6.
b) Chứng minh a - 13b chia hết cho 6:
Tương tự như trường hợp trên, ta có:
a - 13b = (a - b) - 12b.
Thay thế a - b = 6k (theo (1)) vào biểu thức trên:
a - 13b = 6k - 12b = 6(k - 2b).
Vì k - 2b là một số nguyên, nên a - 13b chia hết cho 6.
a, \(a+5b=\left(a-b\right)+6b\)
Do \(\left\{{}\begin{matrix}a-b⋮6\\6b⋮6\end{matrix}\right.\Rightarrow\left(a-b\right)+6b⋮6\Rightarrow a+5b⋮6\)
b, \(a-13b=\left(a-b\right)-12b\)
Do \(\left\{{}\begin{matrix}a-b⋮6\\-12b⋮6\end{matrix}\right.\Rightarrow\left(a-b\right)-12b⋮6\Rightarrow a-13b⋮6\)
A = 710 + 79 _ 78
A = 78 . ( 72 + 7 - 1 )
A = 78 . 55
A = 78 . 5 . 11 \(⋮\)11
Ta có :
710 + 79 - 78
= 78 ( 72 + 7 - 1 )
= 78 x 55 = 78 x 5 x 11
\(\Rightarrow7^8\times5\times11⋮11\)
a) Ta có:
\(x-y⋮7\)
Vì \(21x⋮7\) nên:
\(x-y+21x⋮\\ \Rightarrow22x-y⋮7\)
Vậy...
b) Ta có:
\(x-y⋮7\)
Vì \(7x⋮7\) và \(21y⋮7\) nên:
\(x-y+7x+21y⋮\\ \Rightarrow8x+20y⋮7\)
Vậy...
c) Ta có:
\(x-y⋮7\\ \Rightarrow11.\left(x-y\right)⋮7\\ \Rightarrow11x-11y⋮7\)
Vì \(21y⋮7\) nên:
\(11x-11y+21y⋮\\ \Rightarrow11x+10y⋮7\)
Vậy...
Ta có `x - y ⋮ 7`
`=>x-y=7k(k∈N)`
`=>x=7k+y`
a) `22x-y`
`=22(7k+y)-y`
`=7k*22+22y-y`
`=7k*22+21y`
`=7*(22k+3y)⋮7`
b) `8x+20y`
`=8(7k+y)+20y`
`=56k+8y+20y`
`=56k+28y`
`=7*(8k+4y)⋮7`
c) `11x+10y`
`=11(7k+y)+10y`
`=77k+11y+10y`
`=77k+21y`
`=7*(11k+3y)⋮7`