tìm x để biểu thức sau nguyên: \(\frac{5}{\sqrt{2x+1}+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{5}{\sqrt{2x+1}+2}\)
\(A\inℤ\Leftrightarrow5⋮\left(\sqrt{2x+1}+2\right)\)
\(\Leftrightarrow\sqrt{2x+1}+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Mà \(\sqrt{2x+1}+2\ge2\)
\(\Rightarrow\sqrt{2x+1}+2=5\)
\(\Leftrightarrow\sqrt{2x+1}=3\)
\(\Leftrightarrow2x+1=9\)
\(\Leftrightarrow2x=8\Leftrightarrow x=4\)
Để \(\frac{5}{\sqrt{2x+1}+2}\) nguyên
\(\Leftrightarrow\sqrt{2x+1}+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Leftrightarrow\sqrt{2x+1}\in\left\{-3;-1;-7;3\right\}\)
\(\Leftrightarrow2x+1\in\left\{9;1;49\right\}\) Đoạn này chỉ tính trường hợp \(\sqrt{1}=-1\)và \(\sqrt{49}=-7\)
\(\Leftrightarrow x\in\left\{4;0;24\right\}\)
Hình như bị sai sai thì phải ạ ??
Cảm giác như vậy ... Nếu thấy sai thì ib tớ ạ :33
1) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
\(P=\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\)
\(\Leftrightarrow P=\frac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
\(\Leftrightarrow P=\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
\(\Leftrightarrow P=\frac{4x+8\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
\(\Leftrightarrow P=\frac{4\sqrt{x}}{2-\sqrt{x}}\)
2) Để \(P=2\)
\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}=2\)
\(\Leftrightarrow4\sqrt{x}=4-2\sqrt{x}\)
\(\Leftrightarrow6\sqrt{x}=4\)
\(\Leftrightarrow\sqrt{x}=\frac{2}{3}\)
\(\Leftrightarrow x=\frac{4}{9}\)
Vậy để \(P=2\Leftrightarrow x=\frac{4}{9}\)
3) Khi \(\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\2\sqrt{x}-1==0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=2\\\sqrt{x}=\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\left(ktm\right)\\x=\frac{1}{4}\left(tm\right)\end{cases}}\)
Thay \(x=\frac{1}{4}\)vào P, ta được :
\(\Leftrightarrow P=\frac{4\sqrt{\frac{1}{4}}}{2-\sqrt{\frac{1}{4}}}=\frac{4\cdot\frac{1}{2}}{2-\frac{1}{2}}=\frac{2}{\frac{3}{2}}=\frac{4}{3}\)
4) Để \(P=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\)
\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\)
\(\Leftrightarrow8x-4\sqrt{x}=-x-\sqrt{x}+6\)
\(\Leftrightarrow9x-3\sqrt{x}-6=0\)
\(\Leftrightarrow3x-\sqrt{x}-2=0\)
\(\Leftrightarrow\sqrt{x}=3x-2\)
\(\Leftrightarrow x=9x^2-12x+4\)
\(\Leftrightarrow9x^2-13x+4=0\)
\(\Leftrightarrow\left(9x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}9x-4=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{9}\\x=1\end{cases}}\)
Thử lại ta được kết quá : \(x=\frac{4}{9}\left(ktm\right)\); \(x=1\left(tm\right)\)
Vậy để \(P=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\Leftrightarrow x=1\)
5) Để biểu thức nhận giá trị nguyên
\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}\inℤ\)
\(\Leftrightarrow4\sqrt{x}⋮2-\sqrt{x}\)
\(\Leftrightarrow-4\left(2-\sqrt{x}\right)+8⋮2-\sqrt{x}\)
\(\Leftrightarrow8⋮2-\sqrt{x}\)
\(\Leftrightarrow2-\sqrt{x}\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{1;3;0;4;-2;6;-6;10\right\}\)
Ta loại các giá trị < 0
\(\Leftrightarrow\sqrt{x}\in\left\{1;3;0;4;6;10\right\}\)
\(\Leftrightarrow x\in\left\{1;9;0;16;36;100\right\}\)
Vậy để \(P\inℤ\Leftrightarrow x\in\left\{1;9;0;16;36;100\right\}\)
\(\)
Để \(\frac{5}{\sqrt{2x+1}+2}\)nguyên thì \(\sqrt{2x+1}+2\in\)Ư(5) = \(\hept{ }-5;-1;1;5\)
TH1 với \(\sqrt{2x+1}+2=-5\)
\(\Rightarrow\sqrt{2x+1}=3\Rightarrow2x+1=9\Rightarrow x=5\)
TH2 với \(\sqrt{2x+1}+2=-1\)
\(\Rightarrow\sqrt{2x+1}=1\Rightarrow2x+1=1\Rightarrow x=0\)
TH3 với \(\sqrt{2x+1}+2=1\)
\(\Rightarrow\sqrt{2x+1}=3\)tương tự TH1
TH4 với \(\sqrt{2x+1}+2=5\)
\(\Rightarrow\sqrt{2x+1}=7\Rightarrow2x+1=49\Rightarrow x=24\)
Vậy \(x\in\hept{ }0;5;24\)
dùm mình ; mình thanks trước
dùm mình nha