K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2017

a, 24^10 < 3^30 + 4^30 + 5^30

b, 2^100 < 5^50 < 3^75.

31 tháng 8 2018

a, 2^24 > 3^16

b, 5^300>3 ^500

c,99^20 > 9999^10

d, 2^30 +3^44 +4^30 < 3x24^10

24 tháng 6 2021

`a)2^{300}=(2^3)^100=8^100`

`3^200=(3^2)^100=9^100`

Vì `9^100>8^100`

`=>2^300<3^200`

`b)3xx24^10`

`=3.(3.8)^10`

`=3^{11}.8^10`

`=3^{11}.2^30`

`2^300=2^{30}.2^{270}`

`=2^{30}.8^{90}`

Vì `3^11<8^90`

`=>3^{11}.2^30<8^{90}.2^30=2^300`

`=>3xx24^{10}<2^300+3^20+4^30`

11 tháng 3 2016

Ta có: \(4^{30}=2^{30}.2^{30}=\left(2^3\right)^{10}.\left(2^2\right)^{15}=8^{10}.4^{15}>8^{10}.3^{15}>8^{10}.3^{11}\) (1)

Mà  \(8^{10}.3^{11}=8^{10}.3^{10}.3=\left(8.3\right)^{10}.3=24^{10}.3\)  (2)

Từ (1);(2)=> \(4^{30}>3.24^{10}\)

Vậy \(2^{30}+3^{30}+4^{30}>3.24^{10}\)