Bài 3: Tìm x , biết:
a ) 2/5+3/4:X=-1/2
b) 5/7 - 2/3 . X=4/5
c) 1/2x + 3/5x = -2/3
d)4/7x-x=-9/14
CẢM ƠN CC ĐÃ GIÚP CHÚC CÓ 1 NGÀY TỐT LÀNH HC TẬP TỐT NHÉE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để \(\left|8-x\right|=8-x< =>8-x\ge0< =>x\le8\)
\(=>8-x=x^2+x< =>x^2+2x-8=0\)
\(< =>\left(x+1\right)^2-3^2=0< =>\left(x-2\right)\left(x+4\right)=0\)
\(=>\left[{}\begin{matrix}x=2\left(TM\right)\\x=-4\left(TM\right)\end{matrix}\right.\)
*để\(\left|8-x\right|=x-8< =>8-x< 0< =>x>8\)
\(=>x-8=x^2+x< =>x^2=-8\)(vô lí)
vậy x=2 hoặc x=-4
Bài 8:
a: Khi a=1 thì phương trình sẽ là \(\left(1-4\right)x-12x+7=0\)
=>-3x-12x+7=0
=>-15x+7=0
=>-15x=-7
hay x=7/15
b: Thay x=1 vào pt, ta được:
\(a^2-4-12+7=0\)
\(\Leftrightarrow\left(a-3\right)\left(a+3\right)=0\)
hay \(a\in\left\{3;-3\right\}\)
c: Pt suy ra là \(\left(a^2-16\right)x+7=0\)
Để phương trình đã cho luôn có một nghiệm duy nhất thì (a-4)(a+4)<>0
hay \(a\notin\left\{4;-4\right\}\)
a, bạn tự giải
b, \(\Delta=\left(m+1\right)^2-4m=\left(m-1\right)^2\ge0\)
Vậy pt luôn có 2 nghiệm x1 ; x2
c, Thay x = 1 ta được \(1+m+1+m=0\Leftrightarrow2m+2=0\Leftrightarrow m=-1\)
Thay m = -1 vào ta được \(x^2-1=0\Leftrightarrow x=1;x=-1\)
hay nghiệm còn lại là -1
a) Điều kiện : \(x\ge-\frac{3}{4}\)
Xét : \(\sqrt{x+1+\sqrt{x+\frac{3}{4}}}=\sqrt{\left(x+\frac{3}{4}\right)+2.\sqrt{x+\frac{3}{4}}.\frac{1}{2}+\frac{1}{4}}=\sqrt{\left(\sqrt{x+\frac{3}{4}}+\frac{1}{2}\right)^2}=\sqrt{x+\frac{3}{4}}+\frac{1}{2}\)
\(\Rightarrow x+\sqrt{x+\frac{3}{4}}+\frac{1}{2}=a\Leftrightarrow\left(x+\frac{3}{4}\right)+\sqrt{x+\frac{3}{4}}-\left(\frac{1}{4}+a\right)=0\)
Đặt \(y=\sqrt{x+\frac{3}{4}},y\ge0\). pt trên trở thành \(y^2+y-\left(a+\frac{1}{4}\right)=0\)
Để pt có nghiệm theo y thì \(\Delta=1^2+4.\left(a+\frac{1}{4}\right)=2\left(2a+1\right)\ge0\Leftrightarrow a\ge-\frac{1}{2}\)
Khi đó : \(x_1=\frac{-1-\sqrt{2\left(2a+1\right)}}{2}\), \(x_2=\frac{-1+\sqrt{2\left(2a+1\right)}}{2}\)
a) Thay m=-2 vào pt:
\(x^2-2.\left(-2+1\right).x-\left(-2+2\right)=0\\ \Leftrightarrow x^2+2x=0\\ \Leftrightarrow x.\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Với m= -2 => S= {-2;0}
b) Để phương trình trên có 1 nghiệm x1=2:
<=> 22 -2.(m+1).2-(m+2)=0
<=> 4-4m -4 -m-2=0
<=> -5m=2
<=>m=-2/5
c) ĐK của m để pt trên có nghiệm kép:
\(\Delta'=0\\ \Leftrightarrow\left(m+1\right)^2+1.\left(m+2\right)=0\\ \Leftrightarrow m^2+3m+3=0\)
Vô nghiệm.
a, x 2 − 2 ( m + 1 ) x + m 2 + m − 1 = 0 (1)
Với m = 0, phương trình (1) trở thành:
x 2 − 2 x − 1 = 0 Δ ' = 2 ; x 1 , 2 = 1 ± 2
Vậy với m = 2 thì nghiệm của phương trình (1) là x 1 , 2 = 1 ± 2
b) Δ ' = m + 2
Phương trình (1) có hai nghiệm phân biệt ⇔ m > − 2
Áp dụng hệ thức Vi-ét, ta có: x 1 + x 2 = 2 ( m + 1 ) x 1 x 2 = m 2 + m − 1
Do đó:
1 x 1 + 1 x 2 = 4 ⇔ x 1 + x 2 x 1 x 2 = 4 ⇔ 2 ( m + 1 ) m 2 + m − 1 = 4 ⇔ m 2 + m − 1 ≠ 0 m + 1 = 2 ( m 2 + m − 1 ) ⇔ m 2 + m − 1 ≠ 0 2 m 2 + m − 3 = 0 ⇔ m = 1 m = − 3 2
Kết hợp với điều kiện ⇒ m ∈ 1 ; − 3 2 là các giá trị cần tìm.
`2/5 + 3/4 :x= -1/2 `
`=> 3/4 :x = -1/2 - 2/5`
`=> 3/4 : x = -9/10`
`=> x = 3/4 : (-9/10)`
`=> x = 3/4 . (-10/9) `
`=> x = -5/6`
Vậy `x = -5/6`
------------------
`5/7 - 2/3 x = 4/5`
`=> 2/3 x = 5/7 - 4/5`
`=> 2/3 x = -3/35`
`=> x = -3/35 : 2/3`
`=> x = -3/35 . 3/2`
`=> x = -9/70`
Vậy `x = -9/70`
------------------
`1/2 x + 3/5 x = -2/3`
`=> (1/2 + 3/5) x = -2/3`
`=> 11/10 x = -2/3`
`=> x = -2/3 : 11/10`
`=> x = -2/3 . 10/11`
`=> x = -20/33`
Vậy ` x = -20/33`
------------------
`4/7 x - x = -9/14`
`=> (4/7 - 1) x = -9/14`
`=> -3/7 x = -9/14`
`=> 3/7 x = 9/14`
`=> x = 9/14 : 3/7`
`=> x = 9/14 . 7/3`
`=> x = 3/2`
Vậy `x = 3/2`