K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 8 2024

Do 8 chia hết cho 4 \(\Rightarrow8^{2008}⋮4\)

\(\Rightarrow8^{2008}=4k\)

\(\Rightarrow5^{8^{2008}}=5^{4k}=\left(5^4\right)^k=625^k\)

Mà \(625\equiv1\left(mod24\right)\Rightarrow625^k\equiv1\left(mod24\right)\)

\(\Rightarrow5^{8^{2008}}\equiv1\left(mod24\right)\)

\(\Rightarrow5^{8^{2008}}+23\equiv0\left(mod24\right)\)

Hay \(5^{8^{2008}}+23\) chia hết 24

13 tháng 10 2023

a/

\(A=4^2.4^{37}+4^2.4^{38}+4^2.4^{39}=4^2\left(4^{37}+4^{38}+4^{39}\right)=\)

\(=2.8.\left(4^{37}+4^{38}+4^{39}\right)⋮8\)

b/

\(B=10^7\left(1+10+10^2\right)=10.10^6.111=\)

\(=5.10^6.222⋮222\)

c/

\(C=5^{2006}\left(1+5+5^2\right)=5^{2006}.31⋮31\)

7 tháng 12 2024

3n + 1

20 tháng 3 2017

câu a

có 102008 + 125 = 1000...000125 (2005 số 0)

có 1 + 0 + 0 + 0 +...+ 1 + 2 + 5 = 9

=> 1000...000125 (2005 số 0) chia hết cho 9

mà 1000...000125 (2005 số 0) chia hết cho 5

5 và 9 nguyên tố cùng nhau

=> 1000...000125 (2005 số 0) chia hết cho 45

=> 102008 + 125 chia hết cho 45

câu b

52008 + 52007 + 52006 = 52006(52 + 5 + 1) = 52006 . 31

=> 52006 . 31 chia hết 31

=> 52008 + 52007 + 52006 chia hết 31

2 câu kia để mình xem lại 1 chút nhé, có j đó ko đựoc đúng, hoặc có thể là mình làm sai

chúc may mắn

mk nghĩ bn vào chtt đi chứ giải ra dài quá

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Lời giải:
$A=(2+2^2)+(2^3+2^4)+....+(2^{99}+2^{100})$
$=2(1+2)+2^3(1+2)+...+2^{99}(1+2)$

$=2.3+2^3.3+...+2^{99}.3$

$=3(2+2^3+...+2^{99})\vdots 3$

Ta có đpcm.

28 tháng 2 2022

Đề sai, viết lại thành:

A= 21+22+23+24+...+259+260

Giải:

A=21+22+23+...............+259+260

A=(21+22+23)+...............+(258+259+260)

A=2.(1+2+22)+............+258.(1+2+22)

A=2.7+.......................+258.7

A=(2+24+..............+258).7 ⋮ 7(đpcm)

28 tháng 2 2022

umk

19 tháng 3 2021

Ta có : 

\(A=2+2^2+2^3+2^4...2^{2010}\)\(^0\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(=2.3+2^3.3+....+2^{2009}.3\)

\(=3\left(2+2^3+....+2^{2009}\right)⋮3\)

Ta có :

\(2+2^2+2^3+2^4+....+2^{2010}\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(=2.7+2^4.7+....+2^{2008}.7\)

\(=7\left(2+2^4+....+2^{2008}\right)⋮7\)

Vậy \(2^1+2^2+2^3+2^4+...+2^{2010}⋮3\) và \(7\)