K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
8 tháng 8 2024

a) \(\overline{aaa}=\overline{a00}+\overline{a0}+a=a.100+a.10+a.1\\ =a.\left(100+10+1\right)=a.111=a.37.3⋮3\) (dpcm)

b) \(\overline{ab}+\overline{ba}=\overline{a0}+b+\overline{b0}+a\\ =a.10+b+b.10+a\\ =a.\left(10+1\right)+b.\left(1+10\right)\\ =a.11+b.11\\ =11\left(a+b\right)⋮11\) (dpcm)

c) \(\overline{ab}-\overline{ba}=\overline{a0}+b-\left(\overline{b0}+a\right)\\ =a.10+b-b.10-a\\ =a.\left(10-1\right)+b.\left(1-10\right)\\ =a.9+b.\left(-9\right)\\ =9.\left(a-b\right)⋮9\) (dpcm)

d) \(\overline{abcabc}=\overline{abc000}+\overline{abc}\\ =\overline{abc}.1000+\overline{abc}.1\\ =\overline{abc}.1001=\overline{abc}.11.91⋮11\) (dpcm)

 

2 tháng 11 2016

Chọn

Giải ra đầy đủ nhá

2 tháng 11 2016

Ôi tr. Ý mk mún nói là giải bài ra cho mình

Xét chữ số tận cùng của các lũy thừa trên đều là 1

\(\rightarrow1+11^1+11^2+11^3+...+11^9\)

\(=1+\overline{...1}+\overline{...1}+\overline{...1}+...+\overline{...1}\)

\(=11^0+11^1+11^2+...+11^9\)

  Dãy trên có : 9-0+1=10 số hạng

-> Chữ số tận cùng của tổng là

       10.1=10 ( c/s tận cùng là số 0 )

\(\Rightarrow B⋮5\)( theo dấu hiệu chia hết )

4 tháng 3 2021

Xét chữ số tận cùng của các lũy thừa trên đều là 1

→1+111+112+113+...+119→1+111+112+113+...+119

=1+¯¯¯¯¯¯¯¯¯...1+¯¯¯¯¯¯¯¯¯...1+¯¯¯¯¯¯¯¯¯...1+...+¯¯¯¯¯¯¯¯¯...1=1+...1¯+...1¯+...1¯+...+...1¯

=110+111+112+...+119=110+111+112+...+119

  Dãy trên có : 9-0+1=10 số hạng

-> Chữ số tận cùng của tổng là

       10.1=10 ( c/s tận cùng là số 0 )

⇒B⋮5⇒B⋮5( theo dấu hiệu chia hết )

Xét chữ số tận cùng của các lũy thừa trên đều là 1

→1+111+112+113+...+119→1+111+112+113+...+119

=1+¯¯¯¯¯¯¯¯¯...1+¯¯¯¯¯¯¯¯¯...1+¯¯¯¯¯¯¯¯¯...1+...+¯¯¯¯¯¯¯¯¯...1=1+...1¯+...1¯+...1¯+...+...1¯

=110+111+112+...+119=110+111+112+...+119

  Dãy trên có : 9-0+1=10 số hạng

-> Chữ số tận cùng của tổng là

       10.1=10 ( c/s tận cùng là số 0 )

⇒B⋮5⇒B⋮5( theo dấu hiệu chia hết ) soo

13 tháng 7 2015

bai1 

(2+22)+(23+24)+...+(259+260)

=(2+22+23)+...+(258+259+260)

A=2.(1+2)+23.(1+2)+...+259.(1+2)

A=3.2+3.23+3.59chia hết cho 3 vì có số 3

=2.(1+2+22)+...+258.(1+2+23)

A=3.(2+23+25+...+259)=7.(2+24+27+...+255+258)chia hết cho 7 vì có số 7

14 tháng 7 2015

Ai đó giải hộ mình phần b bài 2 với!!!!! Còn mỗi phần đấy là mình ngồi cắn bút...

13 tháng 10 2019

a,26.3+17.43=26.3+17.26=26.(3+17)=26.20 chia hết cho 10

b,Ta có A=(3+32+33)+...+(3100+3101+3102)=40+40.33+...+40.3100 =40.(1+33+...+3100) chia hết cho 4

A=(3+32)+...+(3101+3102)=13.(32+...+3100) chia hết cho 13

c,Ta có C có 10 số hạng. mà mỗi số hang của C đếu có tận cùng là 1 nên C có tận cùng là 0 chia hheets cho 5

2.Với n=2k=>n.(n+3) chia hết cho 2

với n=2k+1=>n+3 chia hết cho 2=>

n.(n+3) chia hết cho 2

=>với n thuộc N thì n.(n+3) chia hết cho 2

4 tháng 10 2016

Tớ chịu

1 tháng 10 2018

Ta có: \(2^{17}+2^{14}\)

\(=2^{14}\left(2^3+1\right)=2^{14}\times9⋮9\)

\(15^3-25^2\)

\(=3^3.5^3-5^4\)

\(=5^3\left(27-5\right)=5^3.2.11⋮11\)

1 tháng 10 2018

\(2^{17}+2^{14}=2^{14}\left(2^3+1\right)=2^{14}\cdot9\Rightarrow2^{17}+2^{14}⋮9\)

27 tháng 7 2018

Bài 1:

ta có: A = 11^9+11^8+..+11+1

=> 11A = 11^10+11^9+...+11^2+11

=> 11A-A = 11^10-1

10A = 11^10 -1

mà (11^10)-1 = (...1) - 1 = (...0) chia hết cho 10

=> A = (11^10-1):10 sẽ chia hết

=> A chia hết cho 5

Bài 2:

ta 

5 tháng 1 2024

Ta có:

n(n + 1)(n + 2)

= (n² + n)(n + 2)

= n³ + 2n² + n² + 2n

= n³ + 3n² + 2n

Mà n(n + 1)(n + 2) là tích của ba số nguyên liên tiếp (do n là số nguyên)

⇒ n(n + 1)(n + 2) ⋮ 3

⇒ (n³ + 3n² + 2) ⋮ 3

Ta có:

n³ + 11n

= n³ + 3n² + 2n - 3n² + 9n

= (n³ + 3n² + 2n) - 3n(n - 3)

Ta có:

3 ⋮ 3

⇒ 3n(n - 3) ⋮ 3 (với mọi n nguyên)

Mà (n³ + 3n² + 2n) ⋮ 3 (cmt)

⇒ [(n³ + 3n² + 2n) - 3n(n - 3)] ⋮ 3

Vậy (n³ + 11n) ⋮ 3 với mọi số nguyên n