Cho đường tròn (O) đường kính BC=2R. A là một điểm chính giữa cung BC. M di động trên cung nhỏ AC (M≠A; M≠C). AM cắt BC tại D. Chứng minh rằng:
a) TÍch AM.AD không đổi
b) Tâm đường tròn ngoại tiếp tam giác MCD luôn nằm trên một đường thẳng cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Do A là điểm chính giữa cung BC \(\Rightarrow AB=AC\Rightarrow\Delta ABC\) vuông cân tại A
\(\Rightarrow AO\perp BC\)
\(\Rightarrow S_{ABC}=\dfrac{1}{2}AO.BC=\dfrac{1}{2}R.2R=R^2\)
b.
Tứ giác ABCM nội tiếp (O) \(\Rightarrow\widehat{ABC}+\widehat{AMC}=180^0\) (1)
Lại có \(\widehat{ACD}+\widehat{ACB}=180^0\) (2)
Mà \(\widehat{ABC}=\widehat{ACB}\) (\(\Delta ABC\) vuông cân tại A) (3)
(1);(2);(3) \(\Rightarrow\widehat{AMC}=\widehat{ACD}\)
Xét hai tam giác AMC và ACD có:
\(\left\{{}\begin{matrix}\widehat{CAD}\text{ chung}\\\widehat{AMC}=\widehat{ACD}\end{matrix}\right.\) \(\Rightarrow\Delta AMC\sim\Delta ACD\left(g.g\right)\) (4)
\(\Rightarrow\dfrac{AM}{AC}=\dfrac{AC}{AD}\Rightarrow AM.AD=AC^2\)
Do \(\Delta ABC\) vuông cân \(\Rightarrow AC^2=\dfrac{1}{2}BC^2=2R^2\Rightarrow AM.AD=2R^2\) không đổi
Gọi G là tâm đường tròn ngoại tiếp MCD
Từ (4) \(\Rightarrow\widehat{ADC}=\widehat{MCA}\)
Mà \(\widehat{ADC}=\dfrac{1}{2}\widehat{MGC}\) (góc nội tiếp và góc ở tâm cùng chắn cung CM)
\(\Rightarrow\widehat{ACG}=\widehat{MCA}+\widehat{MCG}=\dfrac{1}{2}\widehat{MGC}+\dfrac{1}{2}\left(180^0-\widehat{MGC}\right)=90^0\)
\(\Rightarrow AC\perp GC\)
Hay tâm G của đường tròn ngoại tiếp MCD luôn nằm trên đường thẳng cố định đi qua C và vuông góc AC
a) Bổ đề: Xét tam giác ABC cân tại A, một điểm M bất kì sao cho ^AMB = ^AMC. Khi đó MB = MC.
Bổ đề chứng minh rất đơn giản, không trình bày ở đây.
Áp dụng vào bài toán: Vì E là điểm chính giữa (BC nên EB = EC = ED => \(\Delta\)BED cân tại E
Ta có ^BAE = ^CAE (2 góc nội tiếp chắn hai cung bằng nhau) hay ^BAE = ^DAE
Áp dụng bổ đề vào \(\Delta\)BED ta được AB = AD. Khi đó AE là trung trực của BD => AE vuông góc BD
Lại có \(\Delta\)BAD ~ \(\Delta\)CFD (g.g). Mà AB = AD nên FD =FC. Từ đó EF vuông góc DC
Xét \(\Delta\)AEF có FD vuông góc AE (cmt), AD vuông góc EF (cmt) => D là trực tâm \(\Delta\)AEF (đpcm).
b) Gọi DN cắt EC tại I. Ta dễ thấy ^MDI = ^MDN = ^MBN = ^MBC = ^MEC = ^MEI
Suy ra bốn điểm D,E,M,I cùng thuộc một đường tròn => ^EMD = ^EID = 900
Nếu ta gọi MD cắt cung lớn BC của (O) tại S thì ^EMS chắn nửa (O) hay ES là đường kính của (O)
Mà E là điểm chính giữa cung nhỏ BC nên S là điểm chính giữa cung lớn BC
Do đó S là điểm cố định (Vì B,C cố định). Vậy MD luôn đi qua S cố định (đpcm).
a: góc AMB=góc ACB=90 độ
=>BM vuông góc DA và AC vuông góc DB
góc DMH+góc DCH=90+90=180 độ
=>DMHC nội tiếp
Xét ΔHMA vuông tại M và ΔHCB vuông tại C có
góc MHA=góc CHB
=>ΔHMA đồng dạng với ΔHCB
=>HM/HC=HA/HB
=>HM*HB=HA*HC
b: góc DBM=góc CBM=1/2*sđ cung CM
góc MBA=1/2*sđ cung MA
mà sđ cung CM=sđ cung MA
nên góc DBM=góc ABM
=>BM là phân giác của góc DBA
Xét ΔBDA có
BM vừa là đường cao, vừa là phân giác
=>ΔBDA cân tại B
d: Xét ΔMAK vuông tại M và ΔMDH vuông tại M có
MA=MD
góc MAK=góc MDH
=>ΔMAK=ΔMDH
=>MK=MH
Xét tứ giác AKDH có
M là trung điểm chung của AD và KH
AD vuông góc KH
=>AKDH là hình thoi