cho tam giác ABC, gọi D là trung điểm của BC. lấy điểm E đối xứng với A qua D
chứng minh AB=CE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nha:
Tứ giác KACB có 2 đường chéo KC và AB cắt nhau tại trung điểm của mỗi đường nên KACB là hình bình hành→KC//BC(1)
tương tự ta có AH//BC(2)
từ (1) và (2)→K, A, H thẳng hàng
mặt khác: KABC là hình bình hành nên KA=BC, tương tự AH=BC.
Vậy H đối xứng Với K qua A
Lời giải:
a. $M$ là trung điểm $BC$, $N$ là trung điểm $AC$ thì $MN$ là đường trung bình của tam giác $ABC$ ứng với cạnh $AB$
$\Rightarrow MN=\frac{1}{2}AB=\frac{1}{2}.12=6$ (cm)
b. $E, A$ đối xứng nhau qua $M$ nghĩa là $M$ là trung điểm $AE$.
Tứ giác $ABEC$ có 2 đường chéo $BC, AE$ cắt nhau tại trung điểm $M$ của mỗi đường nên $ABEC$ là hình bình hành
Mà $\widehat{BAC}=90^0$ nên $ABEC$ là hình chữ nhật.
b. Vì $B,D$ đối xứng nhau qua $A$ nên $BA=AD$
$ABEC$ là hcn (cmt) nên $AB=EC$
$\Rightarrow AD=EC$ (đpcm)
Mặt khác:
$ABEC$ là hcn nên $AB\parallel EC\Rightarrow AD\parallel EC$
Xét tứ giác $ADCE$ có $AD=CE$ và $AD\parallel CE$ nên $ADCE$ là hbh (đpcm)
a: Xét tứ giác OAMB có
D là trung điểm của AB
D là trung điểm của OM
Do đó: OAMB là hình bình hành
a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH
=> AH=AD (1)
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE
=> AH=AE (2)
Từ (1) và (2) suy ra AD=AE (3)
Mặt khác góc DAB=gócBAH; gócHAC= góc CAE và góc BAH+góc HAC=90o
do đó góc DAB+góc BAH+góc HAC+góc CAE=180o
=> D, A, E thẳng hàng (4)
từ (3) và (4) suy ra D và E đx với nhau qua A.
b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE
=> tam giác DHE vuông tại H.
c) Tam giác ADB=tam giác AHB (c-c-c)
suy ra góc ADB=góc AHB=90o
tương tự ta có : góc AEC=90o
suy ra BD//CE (cùng vuông góc với DE)
nên tứ giác BAEC là hình thang có 2 góc vuông kề cạnh bên DE
=> BAEC là hình thang vuông.
a) Vì D là điểm đối xứng với H qua AB nên AB là đường trung trực của DH
=> AH=AD (1)
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE
=> AH=AE (2)
Từ (1) và (2) suy ra AD=AE (3)
Mặt khác góc DAB= góc BAH; góc HAC=góc CAE và góc BAH+góc HAC=90o
Do đó góc DAB + góc BAH+ góc HAC + góc CAE=180o
=> D, A, E thẳng hàng (4)
Từ (3) và (4) suy ra D và E đx với nhau qua A.
b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE
=> tam giác DHE vuông tại H.
c) Tam giác ADB=tam giác AHB (c-c-c)
suy ra góc ADB=góc AHB=90o
tương tự ta có góc AEC=90o
=> BD//CE (cùng vuông góc với DE)
nên tứ giác BDEC là hình thang có 2 góc vuông kề cạnh bên DE
=> BDEC là hình thang vuông.
Do E đối xứng A qua D \(\Rightarrow D\) là trung điểm AE
Mà D là trung điểm BC
\(\Rightarrow AE\) và BC cắt nhau tại trung điểm D của mỗi đường
\(\Rightarrow ABEC\) là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường)
\(\Rightarrow AB=CE\)