K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 8

Do E đối xứng A qua D \(\Rightarrow D\) là trung điểm AE

Mà D là trung điểm BC

\(\Rightarrow AE\) và BC cắt nhau tại trung điểm D của mỗi đường

\(\Rightarrow ABEC\) là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường)

\(\Rightarrow AB=CE\)

26 tháng 8 2016

bạn tự vẽ hình nha:

Tứ giác KACB có 2 đường chéo KC và AB cắt nhau tại trung điểm của mỗi đường nên KACB là hình bình hành→KC//BC(1)

tương tự ta có AH//BC(2)

từ (1) và (2)→K, A, H thẳng hàng

mặt khác: KABC là hình bình hành nên KA=BC, tương tự AH=BC.

Vậy H đối xứng Với K qua A

10 tháng 10 2021

Ka//bc chứ 🙄

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:
a. $M$ là trung điểm $BC$, $N$ là trung điểm $AC$ thì $MN$ là đường trung bình của tam giác $ABC$ ứng với cạnh $AB$

$\Rightarrow MN=\frac{1}{2}AB=\frac{1}{2}.12=6$ (cm)

b. $E, A$ đối xứng nhau qua $M$ nghĩa là $M$ là trung điểm $AE$.

Tứ giác $ABEC$ có 2 đường chéo $BC, AE$ cắt nhau tại trung điểm $M$ của mỗi đường nên $ABEC$ là hình bình hành

Mà $\widehat{BAC}=90^0$ nên $ABEC$ là hình chữ nhật.

b. Vì $B,D$ đối xứng nhau qua $A$ nên $BA=AD$
$ABEC$ là hcn (cmt) nên $AB=EC$

$\Rightarrow AD=EC$ (đpcm)

Mặt khác:

$ABEC$ là hcn nên $AB\parallel EC\Rightarrow AD\parallel EC$

Xét tứ giác $ADCE$ có $AD=CE$ và $AD\parallel CE$ nên $ADCE$ là hbh (đpcm)

 

 

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Hình vẽ:

13 tháng 11 2021

a: Xét tứ giác OAMB có 

D là trung điểm của AB

D là trung điểm của OM

Do đó: OAMB là hình bình hành

12 tháng 12 2015

 a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH 
=> AH=AD (1) 
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE 
=> AH=AE (2) 
Từ (1) và (2) suy ra AD=AE (3) 
Mặt khác góc DAB=gócBAH; gócHAC= góc CAE và góc BAH+góc HAC=90o 
do đó góc DAB+góc BAH+góc HAC+góc CAE=180o 
=> D, A, E thẳng hàng (4) 
từ (3) và (4) suy ra D và E đx với nhau qua A. 

b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE 
=> tam giác DHE vuông tại H. 


c) Tam giác ADB=tam giác AHB (c-c-c) 
suy ra góc ADB=góc AHB=90o
tương tự ta có : góc AEC=90o 
suy ra BD//CE (cùng vuông góc với DE) 
nên tứ giác BAEC là hình thang có 2 góc vuông kề cạnh bên DE 
=> BAEC là hình thang vuông. 

12 tháng 12 2015

 a) Vì D là điểm đối xứng với H qua AB nên AB là đường trung trực của DH 
=> AH=AD (1) 
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE 
=> AH=AE (2) 
Từ (1) và (2) suy ra AD=AE (3) 
Mặt khác góc DAB= góc BAH; góc HAC=góc CAE và góc BAH+góc HAC=90o 
Do đó góc DAB + góc BAH+ góc HAC + góc CAE=180o
=> D, A, E thẳng hàng (4) 
Từ (3) và (4) suy ra D và E đx với nhau qua A. 

b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE 
=>  tam giác DHE vuông tại H. 

c) Tam giác ADB=tam giác AHB (c-c-c) 
suy ra góc ADB=góc AHB=90o 
tương tự ta có góc AEC=90o 
=> BD//CE (cùng vuông góc với DE) 
nên tứ giác BDEC là hình thang có 2 góc vuông kề cạnh bên DE 
=> BDEC là hình thang vuông.