Cho S =30 +32 +34 +36 + ... +32020 . Tính S
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(S=3^0+3^2+3^4+...+3^{2002}\)
\(=\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)
\(=91\cdot\left(1+...+3^{1998}\right)⋮7\)
A = ( 1 + 3^2) + (3^4 + 3^6) + ... + (3^2016 + 3 ^2018 ) + 3 ^ 2020
= 10 + 3^4(1+3^2) + .... + 3^2016.(1+3^2) + 3^2020
= 10.(1+3^4+...+3^2016) + 3^2020
Mà : 3^n có tận cùng là : 1,3,9,7
Do đó 3 ^2020 không chia hết cho 10
Lại có 10.(1+3^4+...+3^2016) chia hết cho 10
=> A không chia hết cho 10
A=(1+32)+(34+36)+ ... + (32018+32020)
=(1+32)+ 34(1+32)+....+32018(1+32)
=(1+32) (1+34+....+32018)
=10 (1+34+....+32018) ⋮10 ( do 10 ⋮10)
Vậy A=1+32+34+36+ ... +32020 ⋮ 10 (đpcm)
Lời giải:
a.
$S=3^0+3^2+3^4+...+3^{2002}$
$3^2S=3^2+3^4+3^6+...+3^{2004}$
$3^2S-S=(3^2+3^4+3^6+...+3^{2004})-(3^0+3^2+3^4+...+3^{2002})$
$8S=3^{2004}-3^0=3^{2004}-1$
$S=\frac{3^{2004}-1}{8}$
b.
$S=(3^0+3^2+3^4)+(3^6+3^8+3^{10})+....+(3^{1998}+3^{2000}+3^{2002})$
$=(3^0+3^2+3^4)+3^6(3^0+3^2+3^4)+....+3^{1998}(3^0+3^2+3^4)$
$=(3^0+3^2+3^4)(1+3^6+...+3^{1998})$
$=91(1+3^6+...+3^{1998})=7.13(1+3^6+...+3^{1998})\vdots 7$
Ta có đpcm.
b: \(S=\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)
\(=91\cdot\left(1+...+3^{1998}\right)⋮7\)
A=[1+3+3^2+3^3]+...+[3^2018+3^2019+3^2020+3^2021]
A=1 nhân[1+3+3^2+3^3]+...+3^2018 nhân [1+3+3^2+3^3]
A=[1+3+3^2+3^3] NHÂN[1+...+3^2018
A=40 nhân [1+...+3^2018]
=> A chia hết cho 40
\(S=\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)
\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)
\(=13\left(1+...+3^7\right)⋮13\)
\(S=1+3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+\left(3^6+3^7\right)+\left(3^8+3^9\right)\)
\(S=4+3^2\left(1+3\right)+3^4\left(1+3\right)+3^6\left(1+3\right)+3^8\left(1+3\right)\)
\(S=4+3^2.4+3^4.4+3^6.4+3^8.4\)
\(S=4\left(3^2+3^4+3^6+3^8\right)\)
\(4⋮4\\ \Rightarrow4\left(3^2+3^4+3^6+3^8\right)⋮4\\ \Rightarrow S⋮4\)