K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2015

Đặt d là ƯC của 3n+2 và 5n+3 => 3n+2 và 5n+3 cùng chia hết cho d

=> 5(3n+2)=15n+10 chia hết cho d và 3(5n+3)=15n+9 chia hết cho d nên

5(3n+2)-3(5n+3)=1 cũng chia hết cho d => d là ước của 1 => d=1

=> 3n+2 và 5n+3 là hai số nguyên tố cùng nhau
 

4 tháng 2 2016

\(\frac{x+8}{2x-5}\)là số nguyên tố khi và chỉ khi x + 8 chia hết cho 2x - 5

Ta thấy: x + 8 chia hết cho 2x - 5 <=> 2(x + 8) chia hết cho 2x - 5 

=> 2x - 5 + 21

=> 2x - 5 chia hết cho 2x - 5 và 21 chia hết cho 2x - 5 

=> 2x - 5 \(\in\)Ư(21) ={1;3;7}

=> x = 3;4;6

=> Số nguyên tố = 11;2  khi x = 3;6

 

4 tháng 2 2016

dễ ợt thui zô mạng hỏi đi

Gọi d=ƯCLN(2x+5;3x+8)

=>\(\left\{{}\begin{matrix}2x+5⋮d\\3x+8⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6x+15⋮d\\6x+16⋮d\end{matrix}\right.\Leftrightarrow6x+15-6x-16⋮d\)

=>\(-1⋮d\)

=>d=1

=>ƯCLN(2x+5;3x+8)=1

=>2x+5 và 3x+8 là hai số nguyên tố cùng nhau

21 tháng 12 2023

Gọi ước chung của 2n + 3 và 4n + 8 là d

Ta có: \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\)

           \(\left\{{}\begin{matrix}2\left(2n+3\right)⋮d\\4n+8⋮d\end{matrix}\right.\)

            \(\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

             4n + 6 - 4n - 8 ⋮ d

                                  2 ⋮ d

             d \(\in\) Ư(2) = {1; 2)

Nếu d =  2 ⇒ 2n + 3 ⋮ 2 ⇒ 3 ⋮ 2 (vô lí loại)

Vậy d = 1; hay 2n + 3 và 4n + 8 là hai số nguyên tố cùng nhau (đpcm)

6 tháng 11 2015

Gọi ƯCLN ( n+1 ; 3n+4 ) = d ( d là số tự nhiên khác 0 )  

=> n+1 chia hết cho d ; 3n+4 chia hết cho d 

=> 3.(n+1) chia hết cho d ; 3n+4 chia hết cho d 

=> 3n+3 chia hết cho d ; 3n+4 chia hết cho d 

=> 3n+4 - (3n+3) chia hết cho d 

=> 1 chia hết cho d 

=> d= 1 

=>  ƯCLN ( n+1 ; 3n+4 ) = 1

=>  n+1 và 3.n+4  là 2 số nguyên tố cùng nhau

19 tháng 11 2017

a, nếu P=2 => P+2=2+2=4 (loại)

nếu P=3 => P+2=3+2=5       

                    P+10 = 3+10=13 (thỏa mãn)

nếu P>3 => P= 3k+1 hoặc 3k+2

        + P= 3k+1=>P+2=3k+1+2=3k+3=3(k+1)   (loại)

        + P=3k+2=>P+10=3k+2+10=3k+12=3(k+4) (loại)

vậy P=3 thỏa mãn bài toán