n/a/u/l/q/ạ/c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Xét \(\Delta CDM\) và \(\Delta EDA\) , ta có :
\(\left\{{}\begin{matrix}\widehat{DMC}=\widehat{DAE}=90^o\\DM=DA\left(\Delta DBA=\Delta DBM\right)\\\widehat{CDM}=\widehat{EDA}\text{( đối đỉnh )}\end{matrix}\right.\)
\(\Rightarrow\Delta CDM=\Delta EDA\left(g.c.g\right)\)
Ta có : \(\left\{{}\begin{matrix}BA=BM\left(\Delta DBA=\Delta DBM\right)\\MC=AE\left(\Delta CDM=\Delta EDA\right)\\BM+MC=BC\left(M\in BC\right)\\BA+AE=BE\left(A\in BE\right)\end{matrix}\right.\)
\(\Rightarrow BC=BE\)
\(\Rightarrow\Delta BEC\) cân tại B
\(\Rightarrow\widehat{MCE}=\dfrac{180^o-\widehat{ABM}}{2}\left(1\right)\)
Ta có : \(\Delta ABM\) cân tại B ( cmt )
\(\Rightarrow\widehat{BMA}=\dfrac{180^o-\widehat{ABM}}{2}\left(2\right)\)
Từ ( 1 ) và ( 2 )
\(\Rightarrow\widehat{MCE}=\widehat{BMA}\)
Mà \(\widehat{MCE}\) và ở vị trí đồng vị
\(\Rightarrow\) AM // EC
Ta có : \(DC=DE\left(\Delta CDM=\Delta EDA\right)\)
\(\Rightarrow\Delta DCE\) cân tại D
d. Ta có : \(\left\{{}\begin{matrix}BA=BM\left(\Delta DBA=\Delta DBM\right)\\DA=DM\left(\Delta DBA=\Delta DBM\right)\end{matrix}\right.\)
\(\Rightarrow\) BD là đường trung trực của đoạn thẳng AM
\(\Rightarrow BD\perp AM\)
Vì \(\left\{{}\begin{matrix}\text{BD\perp AM}\left(cmt\right)\\BD\perp CH\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow\) AM // CH
Mà AM // EC
\(\Rightarrow\) Tia CH và tia EC trùng nhau
\(\Rightarrow\) 3 điểm C , H , E thẳng hàng
Giả sử phân số chưa tối giản
=> n + 1 và n - 3 có ước chung là số nguyên tố
Gọi số nguyên tố d là ước chung của n + 1 và n - 3
=> n + 1 \(⋮\) d
n - 3 \(⋮\) d
=> 4 \(⋮\) d
Do d là số nguyên tố và 4 \(⋮\) d => d = 2
*) d = 2 => n + 1 \(⋮\) 2
mà 2 \(⋮\) 2
=> n - 1 \(⋮\) 2
n - 1 = 2k (k \(\in\) N)
n = 2k + 1
Khi đó n - 3 = (2k + 1) - 3 = 2k - 2 \(⋮\) 2
Vậy khi n = 2k + 1 thì n + 1 và n - 3 chưa nguyên tố cùng nhau
Vậy khi n \(\ne\) 2k + 1 thì phân số \(\frac{n+1}{n-3}\) tối giản
À mình hiểu ý bn r :))
Nhưng mà lm thee vẫn đúng nhé! Tại vì là nếu AB tương ứng cạnh vs AD thì lm v ms sai ạ! Tạm thời gt v thoii :vv mai gt rõ hơn (cs lẽ) :v
Hà Đặng Công Chính hqua mình nhầm hơi chút xl nhé!~
Thực chất thì (theo mình nghĩ ý ạ) 2 cạnh trùng với nhau mà chia thành 2 thì cũng ko hẳn là v đâu bạn !
Mĩnh nghĩ ý của bạn là : AE trùng AB r mà s lại có AB = AC và AE = AD nx đk ạ ? vs mình lm như vậy là đúng :)) ko chia chác j đâu bn :> tại vì là cạnh AB ko tương ứng vs cạnh AE nên lm như v là ok nhá bn :^
a: AC=6cm
b: Xét ΔABH vuông tại H và ΔDBH vuông tại H có
BH chung
HA=HD
Do đó: ΔABH=ΔDBH
c: Xét ΔCAB và ΔCDB có
BA=BD
\(\widehat{ABC}=\widehat{DBC}\)
BC chung
Do đó:ΔCAB=ΔCDB
d: Vì M nằm trên đường trung trực của BD nên MB=MD(1)
Vì M nằm trên đường trung trực của CD nên MC=MD(2)
Từ (1) và (2) suy ra B,D,C nằm trên đường tròn tâm là M(3)
Ta có: ΔDBC vuông tại D
nên D,B,C nằm trên đường tròn đường kính BC(4)
Từ (3) và (4) suy ra M là trung điểm của BC
\(sin^3x-m=3\sqrt[3]{3sinx+m}\)
\(\Leftrightarrow sin^3x=m+3\sqrt[3]{3sinx+m}\)
\(\Leftrightarrow sin^3x+3sinx=3sinx+m+3\sqrt[3]{3sinx+m}\) (1)
Xét hàm \(f\left(t\right)=t^3+3t\Rightarrow f'\left(t\right)=3t^2+3>0\) \(\forall t\)
\(\Rightarrow f\left(t\right)\) đồng biến \(\Rightarrow f\left(t_1\right)=f\left(t_2\right)\Leftrightarrow t_1=t_2\)
\(\Rightarrow\left(1\right)\) xảy ra khi và chỉ khi \(sinx=\sqrt[3]{3sinx+m}\Leftrightarrow sin^3x=3sinx+m\)
\(\Leftrightarrow sin^3x-3sinx=m\), đặt \(sinx=a\)
Xét \(f\left(a\right)=a^3-3a\) với \(-1\le a\le1\), ta tìm GTLN và GTNN của \(f\left(a\right)\) trên đoạn \(\left[-1;1\right]\)
\(f'\left(a\right)=3a^2-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\)
\(f\left(1\right)=-2\) ; \(f\left(-1\right)=2\) \(\Rightarrow-2\le f\left(a\right)\le2\Rightarrow-2\le m\le2\)
\(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=2\end{matrix}\right.\) \(\Rightarrow a^3+b^3=0\)
\(\Rightarrow\) lạc quan
LẠC QUAN