f) 20220+[100-( 32+1)2]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x-1\right|+\left(y+2\right)^{2022}=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x-1\right|=0\\\left(y+2\right)^{2022}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\\ \Rightarrow B=13.1-5\left(-8\right)+2022=13+40+2022=2075\)
1/
$A=1+2-3-4+5+6-7-8+....+2017+2018-2019-2020+2021+2022$
$=(1+2-3-4)+(5+6-7-8)+...+(2017+2018-2019-2020)+4043$
$=(-4)+(-4)+(-4)+...+(-4)+4043$
Số lần xuất hiện của -4 là: $[(2020-1):1+1]:4=505$
$A=(-4)\times 505+4043=2023$
Bài 3:
a: a*S=a^2+a^3+...+a^2023
=>(a-1)*S=a^2023-a
=>\(S=\dfrac{a^{2023}-a}{a-1}\)
b: a*B=a^2-a^3+...-a^2023
=>(a+1)B=a-a^2023
=>\(B=\dfrac{a-a^{2023}}{a+1}\)
|x - 2| + |y - 1| + (x - y - z)²⁰²² = 0 (1)
Do |x - 2| ≥ 0 với mọi x ∈ R
|y - 1| ≥ 0 với mọi x ∈ R
(x - y - z)²⁰²² ≥ 0 với mọi x ∈ R
(1) ⇒ |x - 2| = |y - 1| = (x - y - z)²⁰²² = 0
*) |x - 2| = 0
x - 2 = 0
x = 2
*) |y - 1| = 0
y - 1 = 0
y = 1
*) (x - y - z)²⁰²² = 0
x - y - z = 0
2 - 1 - z = 0
1 - z = 0
z = 1
⇒ C = 26x - 3y²⁰²² + z²⁰²³
= 26.2 - 3.1²⁰²² + 1²⁰²³
= 52 - 3 + 1
= 50
Lời giải:
Đặt $2021=a$ thì:
$A=a^2+(a+1)^2+(a+2)^2+(a+3)^2$
$=4a^2+12a+14=(2a+3)^2+5=4045^2+5$ chia hết cho $25$ nhưng không chia hết cho $5$
Do đó $A$ không là số chính phương
-----------------------
$9\equiv 1\pmod 4\Rightarrow 9^{100}\equiv 1\pmod 4$
$94^{100}\equiv 0\pmod 4$
$1994^{100}\equiv 0\pmod 4$
$\Rightarrow B\equiv 1+1+0+1\equiv 2\pmod 4$
Một scp không thể chia 4 dư 2 nên $B$ không là scp
---------------
Công thức $1^3+2^3+...+n^3=[\frac{n(n+1)}{2}]^2$ là scp nên $C$ là scp.
A = 1/2 + 1/2^2 + 1/2^3 + ... + 1/2^100
2A = 1 + 1/2 + 1/2^2 + ... + 1/2^99
2A - A = (1 + 1/2 + 1/2^2 + ... + 1/2^99) - (1/2 + 1/2^2 + 1/2^3 + ... + 1/2^100)
A = 1 - 1/2^100
B = 1 + 1/3 + 1/3^3 + ... + 1/3^2022
3B = 3 + 1 + 1/3 + ... + 1/3^2021
3B - B = (3 + 1 + 1/3 + ... + 1/3^2021) - (1 + 1/3 + 1/3^3 + ... + 1/3^2022)
2B = 3 - 1/3^2022
B = \(\dfrac{\text{3 - 1/3^2022}}{\text{2}}\)
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) +...............+ \(\dfrac{1}{2^{100}}\)
2.A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) +\(\dfrac{1}{2^3}\).........+\(\dfrac{1}{2^{99}}\)
2A -A = 1 - \(\dfrac{1}{2^{100}}\)
A = 1 - \(\dfrac{1}{2^{100}}\)
B = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^3}\) + ....+ \(\dfrac{1}{3^{2022}}\)
Xem lại đề bài
\(2022^0+\left[100-\left(3^2+1\right)^2\right]\)
\(=1+100-10^2\)
=1
làm sao để ra 102 vậy bạn🤡