K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 8

TH1: \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)

\(\Rightarrow P=\left(1+\dfrac{a}{-a}\right)\left(1+\dfrac{b}{-b}\right)\left(1+\dfrac{c}{-c}\right)=0\)

Th2: \(a+b+c\ne0\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+c+a+a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)

\(\Rightarrow P=\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)=\dfrac{3}{2}.\dfrac{3}{2}.\dfrac{3}{2}=\dfrac{27}{8}\)

a: Khi m=2 thì pt sẽ là x^2-6x-3=0

=>\(x=3\pm2\sqrt{3}\)

 

28 tháng 2 2018

Đáp án là A 

25 tháng 1 2017

program giatriP ;

var P,a,b,c,d:real ;

begin

writeln('nhap a, b, c, d=');

readln(a, b, c, d);

P:=a*a+b*b-(c+d)*(c+d);

writeln('P= ');

readln

end.

NV
16 tháng 4 2022

a. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2}{5}\\x_1x_2=-\dfrac{7}{5}\end{matrix}\right.\)

b.

\(A=x_1^2+x_2^2-x_1x_2=\left(x_1+x_2\right)^2-3x_1x_2\)

\(=\left(\dfrac{2}{5}\right)^2-3\left(-\dfrac{7}{5}\right)=\dfrac{109}{25}\)

7 tháng 11 2019

Đáp án B

P T ⇔ log 2 2 x 2 - x + 2 m - 4 m 2 + log 2 x 2 + m x - 2 m 2 = 0 ⇔ 2 x 2 - x + 2 m - 4 m 2 = x 2 + m x - 2 m 2 > 0 ⇔ x 2 - ( m - 1 ) x + 2 m - 2 m 2 = 0 ( x - m ) ( x + 2 m ) > 0 ⇔ [ x = 2 m x = 1 - m x - m x + 2 m > 0  

Điều kiện để pt đã cho có 2 nghiệm ⇔ 4 m 2 > 0 x - m x + 2 m > 0 ⇔ m ∈ - 1 ; 1 2 \ 0  

Khi đó x 1 2 + x 2 2 > 1 ⇔ 4 m 2 + 1 - m 2 > 1 ⇔ 5 m 2 - 2 m > 0 ⇔ [ m > 2 5 m < 0  

Do đó S = - 1 ; 0 ∪ 2 5 ; 1 2 ⇒ A = - 1 + 2 + 1 = 2

5 tháng 6 2019

Đáp án B

P T ⇔ log 2 2 x 2 - x + 2 m - 4 m 2 + log 2 x 2 + m x - 2 m 2 = 0

⇔ 2 x 2 - x + 2 m - 4 m 2 = x 2 + m x - 2 m 2 > 0

Điều kiện để pt đã cho có 2 nghiệm

Do đó

  S = - 1 ; 0 ∪ 2 5 ; 1 2 ⇒ A = - 1 + 2 + 1 = 2

16 tháng 3 2017

123456789

ko biết

3 tháng 6 2021

Áp dụng viet vào pt \(x^2+px+1=0\) ta được:\(\left\{{}\begin{matrix}a+b=-p\\ab=1\end{matrix}\right.\)

Áp dụng viet vào pt \(x^2+qx+2=0\) ta được:\(\left\{{}\begin{matrix}b+c=-q\\bc=2\end{matrix}\right.\)

\(A=pq-\left(b-a\right)\left(b-c\right)=-\left(a+b\right).-\left(b+c\right)-\left(b^2-bc-ab+ac\right)\)

\(=ab+ac+b^2+bc-b^2+bc+ab-ac\)

\(=2ab+2bc=6\)

3 tháng 6 2021

Phương trình: \(x^2+px+1=0\)

Có 2 nghiệm:a,b

\(\Rightarrow\left\{{}\begin{matrix}a+b=-p\\a.b=1\end{matrix}\right.\)                    \(\Leftrightarrow\left\{{}\begin{matrix}p=-\left(a+b\right)\\1=a.b\end{matrix}\right.\)

Phương trình \(x^2+px+2=0\)

Có 2 nghiệm:b,c

\(\Rightarrow\left\{{}\begin{matrix}b+c=-q\\b.c=2\end{matrix}\right.\)                     \(\Leftrightarrow\left\{{}\begin{matrix}q=-\left(b+c\right)\\2=b.c\end{matrix}\right.\)

Ta có: \(p.q-\left(b-a\right)\left(b-c\right)\)

\(=-\left(a+b\right).\left[-\left(b+c\right)\right]-\left(b-a\right)\left(b-c\right)\)

\(=\left(a+b\right)\left(b+c\right)-\left(b-a\right)\left(b-c\right)\)

\(=ab+ac+b^2+bc-b^2+bc+ab-ac\)

=\(\left(ab+ab\right)+\left(ac-ac\right)+\left(b^2-b^2\right)+\left(bc+bc\right)\)

\(=2ab+2bc\)

\(=2.1+2.2\)

=6

-Chúc bạn học tốt-

 

Chọn B