Cho hai tam gíac ABC và DEF. Trên cạnh BC lấy điểm M và trên cạnh EF lấy điểm N sao cho BM = EN. Biết rằng △ABC = △DEF, chứng minh AM = DN và góc BAM = góc EDN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình~
Xét tam giác ABC và tam giác DFE
\(\frac{AB}{EF}=\frac{6}{12}=\frac{1}{2}\)
\(\frac{AC}{FE}=\frac{9}{18}=\frac{1}{2}\)
\(\frac{BC}{DE}=\frac{12}{24}=\frac{1}{2}\)
\(\Rightarrow\frac{AB}{DF}=\frac{AC}{FE}=\frac{BC}{DE}=\frac{1}{2}\)
=>Tam giác ABC đồng đang với tam giác DFE (c.c.c)
a: Xét ΔABC có \(\widehat{B}< \widehat{C}\)
nên AC>AB
Gọi ( O;R ) , ( I ;r ) lần lượt là các đường tròn ngoại tiếp tam giác ABC, DEF
Tam giác ABC ~ Tam giác DEF ( vì \(\widehat{ABC}=\widehat{DEF};\widehat{BAC}=\widehat{EDF}\)) \(\Rightarrow\widehat{ABC}=\widehat{DEF}\)
\(\widehat{ACB},\widehat{DEF}\)nhọn nên \(\widehat{ACB}=\frac{1}{2}\widehat{AOB};\widehat{DEF}=\frac{1}{2}\widehat{DIE}\)( hệ quả góc nội tiếp )
\(\Rightarrow\widehat{AOB}=\widehat{DIE}\)
\(OA=OB\left(=R\right)\Rightarrow\Delta OAB\)cân tại O
\(ID=IE\left(=r\right)\Rightarrow\Delta IDE\)cân tại I
Do đó Tam giác OAB ~ Tam giác IDE \(\Rightarrow\frac{OA}{ID}=\frac{AB}{DE}\Rightarrow\frac{R}{r}=\frac{3DE}{DE}\)
\(\Rightarrow R=3r\) ( đpcm)
Gọi ( O; R ), ( I; R ) lần lượt là các đường tròn ngoại tiếp tam giác ABC, DEF
Tam giác ABC ~ Tam giác DEF ( vì \(\widehat{ABC}=\widehat{DEF;}\widehat{BAC}=\widehat{EDF}\) ) \(\Rightarrow\widehat{ABC}=\widehat{DEF}\)
\(\widehat{ABC}=\widehat{DEF}\)nhọn nên \(\widehat{ACB}=\frac{1}{2}\widehat{AOB};\widehat{DEF}=\frac{1}{2}\widehat{DIE}\)(hệ quả góc nội tiếp )
\(\Rightarrow\widehat{AOB}=\widehat{DIE}\)
\(OA=OA\left(=R\right)\Rightarrow\Delta OAB\)cân tại O
Do đó Tam giác OAB ~ Tam giác IDE\(\Rightarrow\frac{OA}{ID}=\frac{AB}{DE}\Rightarrow\frac{R}{r}=\frac{3DE}{DE}\)
\(\Rightarrow R=3r\left(đpcm\right)\)
Rất vui vì giúp đc bạn <3
a)
+ Có hai tam giác ABC và tam giác DEF bằng nhau nên các cặp cạnh tương ứng của hai tam giác bằng nhau.
\(\Rightarrow\) BC = EF
\(\Rightarrow\) BM = EN (vì BM = BC/2, EN = EF/2 (1)
+ Có hai tam giác ABC và tam giác DEF bằng nhau nên các góc tương ứng của hai tam giác bằng nhau.
\(\Rightarrow\) Góc ABC = EFBC = góc DEF (2)
+ Có hai tam giác ABC và tam giác DEF bằng nhau nên các cặp cạnh tương ứng của hai tam giác bằng nhau.
\(\Rightarrow\) AB = DE
+ Xét hai tam giác BAM và tam giác DEN, ta có:
\(\left\{{}\begin{matrix}BM=EM\\\widehat{ABC}=\widehat{DEF}\\AB=DE\end{matrix}\right.\)
nên hai tam giác BAM và tam giác DEN bằng nhau theo trường hợp cạnh - góc - cạnh.
b)
+ Có \(\left\{{}\begin{matrix}\Delta ABC=\Delta DEF\\\Delta ABM=\Delta DEN\end{matrix}\right.\)
nên \(\Delta ABC-\Delta ABM=\Delta DEF-\Delta DEN\)
\(\Rightarrow\) Hai tam giác AMC và tam giác DNF bằng nhau.
\(\Rightarrow\) Hai góc MAC và góc NDF tương ứng bằng nhau.
Mong cái này giúp được bạn nhé. ☺
Ta có; ΔABC=ΔDEF
=>AB=DE; BC=EF; AC=DF; \(\widehat{BAC}=\widehat{EDF};\widehat{ABC}=\widehat{DEF};\widehat{ACB}=\widehat{DFE}\)
Xét ΔBAM và ΔEDN có
AB=DE
\(\widehat{ABM}=\widehat{DEN}\)
BM=EN
Do đó: ΔBAM=ΔEDN
=>AM=DN và \(\widehat{BAM}=\widehat{EDN}\)