Cho hình thang ABCD vuông tại A và D có CD = 2AD = 2AB. Gọi E và F lần lượt là trung tuyến của AB và BC . Tính sinC và số đo góc EFD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Goi I là trung điểm của CD
=> I D = AD / 2
=> 2ID = AD
=> 2ID = 2 AB = 2 AD
=> ID = AB = AD
Xét tứ giác ABID có ID = AB = AD
=> ABID là hình thoi
Xét hình thoi ABID có
góc A = góc D = 90 độ
=> ABID là hình vuông
=> AD = B I
=> 2BI = 2AD
=> 2BI = DC
=> BI = DC / 2
=> BI = IC
Vì ABID là hình vuông => BID = 90 độ
=> 180 - BID = 90 độ
=> BIC = 90 độ => tam giác BIC vuông tại I
Xét tam giác vuông BIC co BI = I C
=> tam giác BIC vuông cân tại I
=> I B C = 45 độ
Vì ABI = 90 độ
=> ABI + IBC = 135
=> ABC = 135 độ
a) GỌi E là trung điểm của CD, chi ra ABED là hình vuônng và BEC là tam giác vuông cân.
Từ đó suy ra AB = AD = a, BC = 2a
Diện tích của hình thang ABCD là:
S = = =
b) = (1) ( 2 góc nhọn có cặp cạnh tương ứng vuông góc)
Xét hai tam giác ADC và IBD vuông tại D và B có:
= = , do đó hai tam giác ADC và IBD đồng dạng
Suy ra = (2)
Từ (1), (2) =
Mà + = = = hay =
Chúc bạn học tốtt
#𝗝𝘂𝗻𝗻
BC giao AD=M=> tam giác BDM vuông cân tại B
=>AB là trung trực DM=>EM=ED
mà ED=EF nên M,D,F thuộc đường tròn tâm E bán kính ED
=>gócDEF=2gocsDMFF=90 độ=>đpcm