K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 8 2024

\(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

\(\Rightarrow a+b+c=\dfrac{ab+bc+ca}{abc}=ab+bc+ca\)

\(\Rightarrow a+b+c+\left(abc-1\right)=ab+bc+ca\) (do \(abc-1=0\) nên có thể thêm bớt)

\(\Rightarrow abc-ab-bc-ca+a+b+c-1=0\)

\(\Rightarrow ab\left(c-1\right)-b\left(c-1\right)-a\left(c-1\right)+c-1=0\)

\(\Rightarrow\left(c-1\right)\left(ab-b-a+1\right)=0\)

\(\Rightarrow\left(c-1\right)\left[b\left(a-1\right)-\left(a-1\right)\right]=0\)

\(\Rightarrow\left(c-1\right)\left(a-1\right)\left(b-1\right)=0\) (đpcm)

27 tháng 4 2017

(a-1)(b-1)(c-1)

=(ab-a-b+1)(c-1)

=abc+a+b+c-ab-bc-ac-1

mà abc=1

=>1+a+b+c-ab-bc-ac-1

=a+b+c-ab-bc-ac

vì abc=1

=>ab=1/c;bc=1/a;ac=1/b

=>(a+b+c)-(1/a+1/b+1/c)

mà a+b+c>1/a+1/b+1/c

=>(a+b+c)-(1/a+1/b+1/c)>0

=>(a-1)(b-1)(c-1)>0

22 tháng 9 2019

\(\left(a-1\right)\left(b-1\right)\left(c-1\right)\)

\(=\left(ab-a-b+1\right)\left(c-1\right)\)

\(=abc-ac-bc+c-ab+a+b-1\)

\(=-ac-bc+c-ab+a+b\)

Mà abc = 1 nên \(\hept{\begin{cases}ab=\frac{1}{c}\\bc=\frac{1}{a}\\ac=\frac{1}{b}\end{cases}}\)

\(ĐT\Leftrightarrow\left(a+b+c\right)-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)>0\)

(Vì \(\left(a+b+c\right)>\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\))

Vậy \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\left(đpcm\right)\)

a) Ta có: \(\left(a-1\right)^2\ge0\forall a\)

\(\Leftrightarrow a^2-2a+1\ge0\forall a\)

\(\Leftrightarrow a^2+2a+1\ge4a\forall a\)

\(\Leftrightarrow\left(a+1\right)^2\ge4a\)(đpcm)

thank you very much

 

7 tháng 12 2018

a, \(\left(a+1\right)^2\ge4a\)

\(\Leftrightarrow a^2+2a+1\ge4a\)

\(\Leftrightarrow a^2-2a+1\ge0\)

\(\Leftrightarrow\left(a-1\right)^2\ge0\)(Luôn đúng)

b, Áp dụng bđt Cô-si

\(a+1\ge2\sqrt{a}\)

\(b+1\ge2\sqrt{b}\)

\(c+1\ge2\sqrt{c}\)

\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

                                                               \(=8\sqrt{abc}=8\)(ĐPCM)

Dấu "=" khi a = b = c =1

7 tháng 12 2018

a, \(\left(a-1\right)^2\ge0\)

\(\Rightarrow a^2-2a+1\ge0\)

\(\Leftrightarrow a^2+2a+1>4a\)

\(\Leftrightarrow\left(a+1\right)^2\ge4a.\)

b, Áp dụng bất đẳng thức trên ta có :

( a + 1 )2 > 4a \(\Leftrightarrow\) \(\sqrt{\left(a+1\right)^2}\ge2\sqrt{a}\)

mà \(\sqrt{\left(a+1\right)^2}=\left|a+1\right|\)

Do a > 0 nên a + 1 > 0. Vậy | a + 1 | = a + 1.

Khi đó : a + 1 > \(2\sqrt{a}\)

Tương tự ta có : 

b + 1 > \(2\sqrt{b}\)và c + 1 > \(2\sqrt{c}\)

=> ( a + 1 ) ( b + 1 ) ( c + 1 ) > \(8\sqrt{abc}=8.\)

5 tháng 7 2020

Áp dụng bđt Cauchy cho 2 số không âm :

\(x^2+\frac{1}{x}\ge2\sqrt[2]{\frac{x^2}{x}}=2.\sqrt{x}\)

\(y^2+\frac{1}{y}\ge2\sqrt[2]{\frac{y^2}{y}}=2.\sqrt{y}\)

Cộng vế với vế ta được :

\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2.\sqrt{x}+2.\sqrt{y}=2\left(\sqrt{x}+\sqrt{y}\right)\)

Vậy ta có điều phải chứng mình 

5 tháng 7 2020

Ta đi chứng minh:\(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)* đúng *

Khi đó:

\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)

Tương tự:

\(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{b}{abc\left(a+b+c\right)}\)

\(\Rightarrow LHS\le\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)

22 tháng 12 2021

ai cứu mình với ạ:(

8 tháng 2 2020

Bạn từ chứng minh BĐT đầu bài.

a) Áp dụng: \(VT\le\frac{1}{ab\left(a+b\right)+abc}+\frac{1}{bc\left(b+c\right)+abc}+\frac{1}{ca\left(c+a\right)+abc}\) 

\(=\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)

\(=\frac{1}{a+b+c}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)

b) Với abc = 1. Ta viết BĐT lại thành:

\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{abc}\)

Sử dụng cách chứng minh ở câu a.

c) Đặt \(\left(a;b;c\right)=\left(x^3;y^3;z^3\right)\) thì xyz = 1; x, y, z > 0. Đưa về chứng minh:

\(\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\le1\)

Cách chứng minh tương tự câu b.

16 tháng 12 2016

a) Có: \(\left(a-1\right)^2\ge0,\forall a\)

\(\Leftrightarrow a^2-2a+1\ge0\)

\(\Leftrightarrow a^2+2a+1\ge4a\)

\(\Leftrightarrow\left(a+1\right)^2\ge4a\)

=>đpcm

b) Áp dụng bđt trên ta có:

\(\left(a+1\right)^2\ge4a\) (1)

\(\left(b+1\right)^2\ge4b\) (2)

\(\left(c+1\right)^2\ge4c\) (3)

Nhân vế vs vế (1) ; (2);(3) ta đc:

\(\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge4a\cdot4b\cdot4c=64abc=64\)

\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\)

16 tháng 12 2016

arigatou bạn nha

14 tháng 4 2017

a)

(a+1)2​​>=4a

<=> a2 +2a+1>=4a

<=>a2 -2a+1>=0

<=>(a-1)2>=0 với mọi a

Mà các phép biến đổi trên tương đương

=> đpcm

22 tháng 9 2019

Áp dụng BĐT ở câu a)

\(\left(a+1\right)^2\ge4a\Leftrightarrow\sqrt{\left(a+1\right)^2}\ge\sqrt{4a}\)

Mà a dương nên \(BĐT\Leftrightarrow a+1\ge2\sqrt{a}\)

Chứng minh tương tự: \(b+1\ge2\sqrt{b}\)

\(c+1\ge2\sqrt{c}\)

\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)(Vì abc = 1)

2 tháng 8 2015

a) (a-1)^2 >= 0 <=> a^2 - 2a + 1 >= 0 <=> a^2 + 2a + 1 > 4a <=> (a+1)^2 >= 4a

b) Áp dụng bđt trên: \(\left(a+1\right)^2\ge4a\Leftrightarrow\sqrt{\left(a+1\right)^2}\ge2\sqrt{a}\)

\(\sqrt{\left(a+1\right)^2}=\left|a+1\right|\) Do a > 0 nên a+1>0. Vậy |a+1| = a + 1

Khi đó: a+1 >= 2 căn a

Tương tự ta có b+1 >= 2 căn b và c+1 >= 2 căn c

=> (a+b)(b+a)(c+1) >= 8 căn abc = 8

 

7 tháng 12 2018

9. a) Xét hiệu : (a + 1)\(^2\) – 4a = a\(^2\) + 2a + 1 – 4a = a\(^2\)– 2a + 1 = (a – 1)\(^2\) ≥ 0.