Giải phương trình:
\(x^3+3x^2+4x+2=\left(3x+2\right)\sqrt{3x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dạ 2 đề là 1 ạ tại em muốn ghi lại cho mọi người hiểu ạ
a: \(\Leftrightarrow2x-4\sqrt{x}+\sqrt{x}-2-7=0\)
\(\Leftrightarrow2x-3\sqrt{x}-9=0\)
\(\Leftrightarrow x=09\)
ĐKXĐ: \(x\ge-\dfrac{1}{3}\)
\(\Leftrightarrow\left(x+1\right)^3+\left(x+1\right)=\left(3x+1+1\right)\sqrt{3x+1}\)
Đặt \(\left\{{}\begin{matrix}x+1=a\\\sqrt{3x+1}=b\ge0\end{matrix}\right.\)
Pt trở thành:
\(a^3+a=\left(b^2+1\right)b\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a-b=0\) (do \(a^2+ab+b^2+1=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}+1>0\))
\(\Leftrightarrow\sqrt{3x+1}=x+1\)
\(\Leftrightarrow3x+1=x^2+2x+1\)
\(\Rightarrow x=\left\{0;1\right\}\)