K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 8

Với mọi x;y dương ta có:

\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge x^2+y^2+2xy\)

\(\Leftrightarrow x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow\sqrt{x^2+y^2}\ge\dfrac{x+y}{\sqrt{2}}\)

Áp dụng:

\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\ge\dfrac{a+b}{\sqrt{2}}+\dfrac{b+c}{\sqrt{2}}+\dfrac{c+a}{\sqrt{2}}=\sqrt{2}\left(a+b+c\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

- Với BĐT bên phải: \(\sqrt{3}\left(a+b+c\right)>\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)

Áp dụng BĐT Bunhiacopxki:

\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\le\sqrt{3\left(a^2+b^2+b^2+c^2+c^2+a^2\right)}\)

\(\Leftrightarrow\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\le\sqrt{6\left(a^2+b^2+c^2\right)}\)

Nên ta chỉ cần chứng minh:

\(\sqrt{3}\left(a+b+c\right)>\sqrt{6\left(a^2+b^2+c^2\right)}\)

\(\Leftrightarrow\left(a+b+c\right)^2>2\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ca\)

Thật vậy, do a, b, c là 3 cạnh của 1 tam giác nên theo BĐT tam giác:

\(\left\{{}\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2< a\left(b+c\right)\\b^2< b\left(c+a\right)\\c^2< c\left(a+b\right)\end{matrix}\right.\)

Cộng vế: 

\(a^2+b^2+c^2< 2ab+2bc+2ca\) (đpcm)

5 tháng 9 2017

Xét tam giác ABC vì BC là cạnh lớn nhất nên AB < BC và AC < BC.

Mà ta lại có: AC > 0 và AB > 0 hay 0 < AC và 0 < AB

Giải bài 20 trang 64 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ Đpcm

 

15 tháng 7 2015

SGK

15 tháng 6 2017

Với ΔDEF ta có các bất đẳng thức và quan hệ giữa các cạnh là:

DE < EF + DF

DF < EF + DE

EF < DE + DF

DF - EF < DE < DF + EF (với DF > EF)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Gọi độ dài cạnh còn lại của tam giác là c.

Áp dụng bất đẳng thức tam giác, ta có:

a – b < c < a + b

\( \Leftrightarrow \)a – b + a + b < c + a + b < a + b + a + b

\( \Leftrightarrow \)2a < chu vi tam giác  < 2 (a+b)

Vậy chu vi của tam giác đó lớn hơn 2a và nhỏ hơn 2(a+b).

19 tháng 4 2017

Với ∆DEF ta có các bất đẳng thức và quan hệ giữa các cạnh là:

DE < EF + DF

DF < EF + DE

EF < DE + DF

DF - EF < DE < DF + EF (với DF > EF)

19 tháng 4 2017

Trả lời

Với ∆DEF ta có các bất đẳng thức và quan hệ giữa các cạnh là:

DE < EF + DF

DF < EF + DE

EF < DE + DF

DF - EF < DE < DF + EF (với DF > EF)

9 tháng 3 2017

Theo kết quả câu a và câu b

MA + MB < IB + IA < CA + CB nên MA + MB < CA + CB.

27 tháng 3 2016

a) Xét tam giác vuông AHC có AC là cạnh lớn nhất ( cạnh lớn nhất trong tam giác vuông)                                    => AC>HC (1)                                                                                                                                                 Xét tam giác vuông AHB có AB là cạnh lớn nhất (canh lớn nhất trong tam giác vuông)                                        =>AB>HB  (2)                                                                                                                                                 Ta có : HC+HB+BC ( H nằm giũa A và C)  (3)                                                                                                  Từ (1) , (2) và (3) => AC+AB>BC                                                                                                                    b)Xét tam giác ABC có BC là cạnh lớn nhất(gt)                                                                                               =>BC>AB                                                                                                                                                  Ta có : AC>0 => BC+AC>AB                                                                                                                       Xét tam giác ABC có BC là cạnh lớn nhất (gt) =>BC>AC                                                                             Vì AB>0=>BC+AB>AC

12 tháng 4 2016

DE+DF>EF>GTTĐỐI DE-DF

DE+EF>DF>GTTĐỐI DE-EF

DF+EF>DE>GTTĐỐI DF-EF

8 tháng 4 2015

a) ∆ABC có cạnh BC lớn nhất nên chân đường cao kẻ từ A phải nằm giữa B và C

=> HB  + HC = BC

∆AHC vuông tại H => HC < AC

∆AHB vuông tại H => HB < AB

Cộng theo vế hai bất đẳng thức ta có:

HB + HC < AC + AB

Hay BC < AC + AB

b) BC là cạnh lớn nhất nên suy ra AB < BC và AC < BC

Do đó AB < BC + AC; AC < BC +AB

(cộng thêm AC hoặc AB vào vế phải của bất đẳng thức)

19 tháng 4 2017

a) ∆ABC có cạnh BC lớn nhất nên chân đường cao kẻ từ A phải nằm giữa B và C

=> HB + HC = BC

∆AHC vuông tại H => HC < AC

∆AHB vuông tại H => HB < AB

Cộng theo vế hai bất đẳng thức ta có:

HB + HC < AC + AB

Hay BC < AC + AB

b) BC là cạnh lớn nhất nên suy ra AB < BC và AC < BC

Do đó AB < BC + AC; AC < BC +AB

(cộng thêm AC hoặc AB vào vế phải của bất đẳng thức)