tìm y thuộc Z để (5y-7) chia hết cho (3-2y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Ta có: \(P=x^3+y^3+6xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+6xy\)
\(=\left(x+y\right)^3-3xy\left(x+y-2\right)\)
\(=2^3=8\)
( 3x +2y) +(11x +5y )= 14x + 7y
(3x+2y) + (11x +5 y ) =7(2x+y)
vì 7(2x+y) và 3x +2y chia hết cho 7 => 11x+5y chia hêt cho 7
3x + 2y chia hết cho 7
11 x (3x + 2y) chia hết cho 7
33x + 22y chia hết cho 7
33x + 22y - 7y chia hết cho 7
33x + 15y chia hết cho 7
3(11x + 5y) chia hết cho 7
Mà UCLN(3 ; 7) = 1
=> 11x + 5y chia hết cho 7
a: =>\(n+2\in\left\{1;-1;7;-7\right\}\)
=>\(n\in\left\{-1;-3;5;-9\right\}\)
b: =>n-3+4 chia hết cho n-3
=>\(n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{4;2;5;1;7;-1\right\}\)
c: =>3n^3+n^2+9n^2-1-4 chia hết cho 3n+1
=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)
d: =>10n^2-10n+11n-11+1 chia hết cho n-1
=>\(n-1\in\left\{1;-1\right\}\)
=>\(n\in\left\{2;0\right\}\)
Ta có: \(\left(3x+2y\right)+\left(11x+5y\right)=7\left(2x+y\right)\)
Do \(7\left(2x+y\right)\) và \(3x+2y\) đều chia hết cho 7
Nên \(11x+5y\)cũng chia hết cho 7.
Bài 3:
Ta có: \(2n^2+n-7⋮n-2\)
\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
Tọa độ giao là:
2x+y=5 và 3x-2y=4
=>4x+2y=10 và 3x-2y=4
=>7x=14 và 2x+y=5
=>x=2 và y=1
Thay x=2 và y=1 vào (d3), ta đượ:
2a+5=11
=>2a=6
=>a=3
\(a.\) Ta có: \(B=\frac{3y^3-7y^2+5y-1}{2y^3-y^2-4y+3}=\frac{3y^3-\left(6y^2+y^2\right)+\left(2y+3y\right)-1}{2y^3+\left(3y^2-4y^2\right)-\left(6y-2y\right)+3}\)
\(B=\frac{3y^3-y^2-6y^2+2y+3y-1}{2y^2+3y^2-4y^2-6y+2y+3}=\frac{y^2\left(3y-1\right)-2y\left(3y-1\right)+\left(3y-1\right)}{y^2\left(2+3\right)-2y\left(2y+3\right)+\left(2y+3\right)}\)
\(B=\frac{\left(3y-1\right)\left(y-1\right)^2}{\left(2y+3\right)\left(y-1\right)^2}=\frac{3y-1}{2y+3}\)
\(b.\)Ta có: \(\frac{2B}{2y+3}=\frac{2.\frac{3y-1}{2y+3}}{2y+3}=\frac{\frac{2.\left(3y-1\right)}{2y+3}}{2y+3}=\frac{2.\left(3y-1\right)}{\left(2y+3\right)^2}\in Z\)
\(\Rightarrow\)\(2y+3\inƯ\left(2\right)\)mà \(Ư\left(2\right)=\left\{-2;-1;1;2\right\}\)
Vì \(2y+3\)là số nguyên lẻ \(\Rightarrow\)\(2y+3=-1\) hoặc \(2y+3=1\)
\(2y=\left(-1\right)-3=-4\) \(2y=1-3=-2\)
\(y=\left(-4\right)\div2=-2\) \(y=\left(-2\right)\div2=-1\)
Vậy để \(\frac{2B}{2y+3}\in Z\) thì \(y=-2\) hoặc \(y=-1\)
\(c.\)Để \(B\ge1\)\(\Rightarrow\)\(B-1\ge0\) hay \(\frac{3y-1}{2y+3}-1\ge0\)\(\Rightarrow\)\(\frac{y-4}{2y+3}\ge0\)
* Trường hợp 1: \(y-4\ge0\) và \(2y+3>0\)
\(\Rightarrow\) \(y\ge4\) \(\Rightarrow\) \(2y\)\(>-3\)
* \(\Rightarrow\)\(y\)\(>-\frac{3}{2}\)
Vậy \(y\ge4\)
* Trường hợp 2: \(y-4\)\(\le\)\(0\) và \(2y+3\) \(< 0\)
\(\Rightarrow\)\(y\le4\) \(\Rightarrow\)\(2y< 3\)
\(\Rightarrow\)\(y< \frac{3}{2}\)
Vậy \(y\le4\)
\(5y-7\) chia hết \(3-2y\)
\(\Rightarrow2\left(5y-7\right)⋮\left(3-2y\right)\)
\(\Rightarrow1-5\left(3-2y\right)⋮\left(3-2y\right)\)
\(\Rightarrow1⋮\left(3-2y\right)\)
\(\Rightarrow3-2y\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow y\in\left\{2;1\right\}\)
Do `y ∈ Z => {(5y - 7 ∈ Z),(3-2y ∈ Z):}`
Điều kiện: `3 - 2y ne 0 => 2y ne 3 => y ne 3/2 `
`5y - 7 vdots 3 - 2y`
`=> 10y - 14 vdots 3 - 2y`
Do `3 - 2y vdots 3 - 2y => 15 - 10y vdots 3 - 2y`
`=> 10y - 14 + 15 - 10y vdots 3 - 2y`
`=> 1 vdots 3 - 2y`
`=> 3 - 2y ∈ Ư(1) = {-1;1}`
`=> 2y ∈ {4;2}`
`=> y ∈ {2;1}` (Thỏa mãn)
Vậy `y ∈ {2;1}`