K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2024

Bài này có Thịnh làm cho em rồi nhé. 

5 tháng 7 2017

x=1

5 tháng 7 2017

Đặt A = \(\dfrac{3}{\sqrt{x}+2}\)

Để A \(\in Z\Leftrightarrow\dfrac{3}{\sqrt{x}+2}\in z\Leftrightarrow\left(\sqrt{x}+2\right)\inƯ\left(3\right)\)

\(\Rightarrow\left(\sqrt{x}+2\right)\in\left\{\pm1;\pm3\right\}\)

Ta có bẳng sau:

\(\sqrt{x}+2\) -3 -1 1 3
\(\sqrt{x}\) -5(loại) -3(loại) -1(loại) 1
\(x\) loại loại loại 1

Vậy \(x=1\) thỏa mãn

6 tháng 12 2015

Ta có:

\(x^3+y^3+z^3=3xyz\)

nên  \(x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x^3+y^3\right)+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2+\left(x+y\right).z+z^2\right]-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2-3xy\right]=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)

\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left(2x^2+2y^2+2z^2-2xy-2xz-2yz\right)=0\)

\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)\right]=0\)

\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

\(\Leftrightarrow^{x+y+z=0}_{x=y=z}\)

Do đó:

\(M=\left(2-\frac{x}{y}\right)^{2013}+\left(3-\frac{2x}{z}\right)^{2014}+\left(4-\frac{3z}{x}\right)^{2015}\)

\(=\left(2-\frac{y}{y}\right)^{2013}+\left(3-\frac{2z}{z}\right)^{2014}+\left(4-\frac{3x}{x}\right)^{2015}\)

\(=\left(2-1\right)^{2013}+\left(3-2\right)^{2014}+\left(4-3\right)^{2015}\)

\(M=1^{2013}+1^{2014}+1^{2015}=1+1+1=3\)

                                                    ----------------------------------------------------

 

 

7 tháng 8 2023

a) ĐKXĐ: \(x\ge0;x\ne9;x\ne4\)

\(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(M=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\)

\(M=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(M=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(M=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(M=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(M=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

b) Ta có M ϵ Z thì \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3+4}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3}{\sqrt{x}-3}+\dfrac{4}{\sqrt{x}-3}=1+\dfrac{4}{\sqrt{x}-3}\)

Phải thuộc Z vậy:

4 ⋮ \(\sqrt{x}-3\)

\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Mà: \(x\ge0,x\ne4,x\ne9\) nên \(\sqrt{x}-3\in\left\{1;2;-2;4\right\}\)

\(\Rightarrow x\in\left\{16;25;1;49\right\}\)

a: Thay x=-3 vào A, ta được:

\(A=\dfrac{-3-5}{-3-4}=\dfrac{8}{7}\)

b: \(B=\dfrac{2}{x+5}+\dfrac{x+25}{\left(x+5\right)\left(x-5\right)}=\dfrac{2x-10+x+25}{\left(x+5\right)\left(x-5\right)}=\dfrac{3x+15}{\left(x-5\right)\left(x+5\right)}=\dfrac{3}{x-5}\)

c: Để M là số nguyên thì \(x-4\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{3;7;1\right\}\)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Đa thức biểu thị kết quả thứ nhất: K = (x + 1)2

Đa thức biểu thị kết quả thứ hai: H = (x – 1)2

Đa thức biểu thị kết quả cuối cùng:

Q = K – H = (x + 1)2 - (x – 1)2

= (x+1).(x+1) - (x – 1). (x – 1)

= x.(x+1) + 1.(x+1) - x(x-1) + (-1). (x-1)

= x.x + x.1 + 1.x + 1.1 –[ x.x – x .1 + (-1).x + (-1) . (-1)]

= x2 + x + x + 1 – (x2 – x – x + 1)

= x2 + x + x + 1 – x2 + x + x – 1

= (x2 - x2 ) + (x+x+x+x) + (1- 1)

= 4x

Để tìm x, ta lấy kết quả cuối cùng chia cho 4