K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2017

a) k=1 vì 23 là số nguyên tố.

b)vì các số chẵn còn lại đều chia hết cho 2.

31 tháng 10 2017

Số 2 là số chẵn duy nhất là vì số 0 : và 1 ko phải là hợp số hay số nguyên tố nên chỉ có 2 mới là số nguyên tố chẵn duy nhất 

23 tháng 10 2015

Câu 1 :nếu k=0 thì 23k=0 ko là số nguyên tố [loại]

           nếu k=1 thì 23k=23 nguyên tố 

           nếu k>1 thì 23k có nhiều hơn 2 ước [là hợp số ; loại]

             Vậy k=1

Câu 2; 2 là số nguyên tố chẵn duy nhất vì nó có 2 ước là 1 và chính nó còn những số chẵn khác đều chia hết cho 2.

14 tháng 10 2022

Câu 1 :nếu k=0 thì 23k=0 ko là số nguyên tố [loại]

           nếu k=1 thì 23k=23 nguyên tố 

     

Câu 1 :nếu k=0 thì 23k=0 ko là số nguyên tố [loại]

           nếu k=1 thì 23k=23 nguyên tố 

           nếu k>1 thì 23k có nhiều hơn 2 ước [là hợp số ; loại]

             Vậy k=1

Câu 2; 2 là số nguyên tố chẵn duy nhất vì nó có 2 ước là 1 và chính nó còn những số chẵn khác đều chia hết cho 2.

 

22 tháng 7 2016

a) + Với k = 0 thì 23.k = 23.0 = 0, không là số nguyên tố, loại

+ Với k = 1 thì 23.k = 23.1 = 23, là số nguyên tố, chọn

+ Với k > 1 thì 23k có ít nhất 3 ước là: 1; 23 và k, không là số nguyên tố, loại

Vậy k = 1

b) 2 là số nguyên tố chẵn duy nhất vì:

+ 2 chỉ có 2 ước là 1 và chính nó

+ Nếu tồn tại 1 số nguyên tố chẵn > 2 thì số đó có ít nhất 3 ước là: 1; 2 và chính nó, vô lí

14 tháng 10 2015

a) 23.k có ít nhất các ước là 23;k;1

23.k là số nguyên tố nếu nó chỉ có 2 ước là 1 và chính nó (là 23.k)

=> 23.k = 23 => k = 1

Vậy...

b) 2 chỉ có 2 ước là  1 và 2 nên 2 là số nguyên tố

các số chẵn lớn hơn 2 có ít nhất 3 ước là 1;2;và chính nó nên không thể là số nguyên tố

Vậy 2 là số nguyên tố chẵn duy nhất

 

20 tháng 9 2017

Nếu k=0 thì 13.k=13.0=0 không là số nguyên tố

Nếu k=1 thì 13.k=13.1=1 là số nguyên tố

Nếu k >1 thì 13.k chia hết cho k => 13.k không là số nguyên tố

Vậy k chỉ có thể là 1.

21 tháng 10 2021

câu 1(k≥0)

Ta có nếu k>1 thì x⋮1;k;23;và chính nó(loại)

Ta có nếu k=0 thì 23.0 =0 (loại vì 0 không phải là số nguyên tố

Ta có nếu k=1 thì 23.1=23 (chọn vì 23 là số nguyên tố 

=>k=1

Câu 2 

Vì 2 chia hết cho 1 và chính nó 

còn các số chẵn khác thì sẽ có dạng 2k (k>1;k∈N*)

=>các số đó chia hết cho 2;1;k;và chính nó

 

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:

a.

Nếu $n=0$ thì $2^n+22=23$ là snt (thỏa mãn)

Nếu $n>0$ thì $2^n$ chẵn, $22$ chẵn

$\Rightarrow 2^n+22$ chẵn. Mà $2^n+22>2$ nên không thể là snt (trái đề bài)

Vậy $n=0$

b. $13n$ là snt khi $n<2$

Mà $n$ là snt nên $n=0,1$. Nếu $n=0$ thì $13n=0$ không là snt

Nếu $n=1$ thì $13n=13$ là snt (tm)

28 tháng 10 2021

cảm ơn bn

 

15 tháng 11 2021

a) Với p=2

⇒ 5p+3=13 (TM)

Với p>2 

⇒ p=2k+1

⇒ 5p+3=5(2k+1)+3

             =10k+8 ⋮2

⇒ là hợp số (L)

Vậy p=2