K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16x+40=120

=>16x=120-40=80

=>\(x=\dfrac{80}{16}=5\)

4
456
CTVHS
5 tháng 8

\(16x+40=120\)

\(16x=120-40\)

\(16x=80\)

\(x=80:16\)

\(x=5\)

Vậy...

15 tháng 3 2021

Không biết em có làm sai không:

ĐKXĐ: \(x,y\ge0\).

Đặt 2x = a; 3y = b. 

 HPT trở thành:

\(\left\{{}\begin{matrix}\left(\sqrt{5}\right)^a-\left(\sqrt{5}\right)^b+\left(a-b\right)\left(ab+12\right)=0\\a^2+b^2=16\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=16\\\left(\sqrt{5}\right)^a-\left(\sqrt{5}\right)^b+\left(b-a\right)\left(a^2+b^2\right)+a^3-b^3+12\left(a-b\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=16\\\left(\sqrt{5}\right)^a+a^3-4a=\left(\sqrt{5}\right)^b+b^3-4b=0\left(1\right)\end{matrix}\right.\).

Giả sử \(a\ge b\Rightarrow\left(\sqrt{5}\right)^a\ge\left(\sqrt{5}\right)^b\). Mà \(\left(a^3-4a\right)-\left(b^3-4b\right)=\left(a-b\right)\left(a^2+ab+b^2-4\right)\ge0\) nên VT(1) \(\ge\) VP(1). 

Do đẳng thức xảy ra nên ta có a = b. Thay vào ta tìm được a = b = \(2\sqrt{2}\) nên \(x=\sqrt{2};y=\dfrac{2\sqrt{2}}{3}\).

 

15 tháng 3 2021

\(\left\{{}\begin{matrix}\left(\sqrt{5}\right)^{2x}-\left(\sqrt{5}\right)^{3y}=\left(3y-2x\right)\left(6xy+12\right)\left(1\right)\\4x^2+9y^2=16\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Rightarrow4x^2+9y^2-4=12\) the vo (1)

\(\Rightarrow\left(\sqrt{5}\right)^{2x}-\left(\sqrt{5}\right)^{3y}=\left(3y-2x\right)\left(6xy+4x^2+9y^2-4\right)\)

\(\Leftrightarrow\left(\sqrt{5}\right)^{2x}-\left(\sqrt{5}\right)^{3y}=27y^3-8x^3-12y+8x\)

\(\Leftrightarrow\left(\sqrt{5}\right)^{2x}+\left(2x\right)^3-4.\left(2x\right)=\left(\sqrt{5}\right)^{3y}+\left(3y\right)^3-4.\left(3y\right)\left(3\right)\)

Xét hàm số \(f\left(t\right)=\left(\sqrt{5}\right)^{2t}+\left(2t\right)^3-4.2t\)  đồng biến trên R

\(\Rightarrow\left(3\right):f\left(2x\right)=f\left(3y\right)\Leftrightarrow\left\{{}\begin{matrix}2x=3y\\4x^2+9y^2=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=\dfrac{2\sqrt{2}}{3}\end{matrix}\right.\)

 

 

 

12 tháng 2 2018

Tham khảo bài này :

(3x+1)(7x+3)=(5x-7)(3x+1)

<=> (3x+1)(7x+3)-(5x-7)(3x+1)=0

<=> (3x+1)(7x+3-5x+7)=0

<=> (3x+1)(2x+10)=0

<=> 2(3x+1)(x+5)=0

=> 3x+1=0 hoặc x+5=0

=> x= -1/3 hoặc x=-5

Vậy x = -1/3 hoặc x = -5

12 tháng 2 2018

\(a,x^2+10x+25-4x\left(x+5\right)=0.\)

\(\Leftrightarrow\left(x+5\right)^2-4x\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(5-3x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\5-3x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}}\)

\(b,\left(4x-5\right)^2-2\left(16x^2-25\right)=0\)

\(\Leftrightarrow\left(4x-5\right)^2-2\left(4x+5\right)\left(4x-5\right)=0\)

\(\Leftrightarrow-\left(4x-5\right)\left(4x+15\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x-5=0\\4x+15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=-\frac{15}{4}\end{cases}}}\)

15 tháng 7 2019

Đặt Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 ta có phương trình 6u – 8 = 3u + 7.

Giải phương trình này:

6u – 8 = 3u + 7

⇔ 6u – 3u = 7 + 8

⇔ 3u = 15 ⇔ u = 5

Vậy (16x + 3)/7 = 5 ⇔ 16x + 3 = 35

⇔ 16x = 32 ⇔ x = 2

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

⇔ (16x + 3)/7 = 5 ⇔ 16x + 3 = 35

⇔ 16x = 32 ⇔ x = 2

5 tháng 3 2021

Xem video này nhé:

https://www.facebook.com/BBCnewsVietnamese/videos/408386896476118

 

3 tháng 1 2023

\(\dfrac{48}{120}=\dfrac{48:24}{120:24}=\dfrac{2}{5}\\ \dfrac{-60}{108}=\dfrac{-60:12}{108:12}=-\dfrac{5}{9}\)

3 tháng 1 2023

48/120=2/5

-60/108=-5/9

11 tháng 10 2021

Nhúng một thanh sắt vào dung dịch và để một thời gian cho phản ứng xảy ra hoàn toàn.

               CuSO4 + Fe → FeSO4 + Cu

              Cu2+ +Fe→ Fe2+ + Cu

(Fe đứng trước Cu trong dãy hoạt động hóa học nên đẩy Cu ra khỏi dung dịch muối)

Toàn bộ Cu thoát ra bám trên bề mặt thanh sắt, lấy thanh sắt ra ta còn lại dung dịch chỉ có FeSO4

26 tháng 11 2018

\(16x^4-8x^2+1=\left(4x^2\right)^2-2.4x^2.1+1=\left(4x^2-1\right)^2\ge0\forall x\)

\(\Rightarrow16x^4+1\ge8x^2\)(1)

\(y^4-2y^2+1=\left(y^2-1\right)^2\ge0\forall y\)

\(\Rightarrow y^4+1\ge2y^2\)(2)

Từ (1) và (2) \(\Rightarrow\left(16x^4+1\right)\left(y^4+1\right)\ge8x^2.2y^2=16x^2y^2\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}4x^2-1=0\\y^2-1=0\end{cases}}\)

Từ đó tìm được \(x=\pm\frac{1}{2},y=\pm1\)

Vậy \(\left(x;y\right)\in\left\{\left(\frac{1}{2};1\right),\left(\frac{1}{2};-1\right),\left(-\frac{1}{2};1\right),\left(-\frac{1}{2};-1\right)\right\}\)

13 tháng 7 2021

\(4x^3-16x=0\)

\(\Leftrightarrow4x\cdot\left(x^2-4\right)=0\)

\(\Leftrightarrow4x\cdot\left(x-2\right)\cdot\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-2=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

13 tháng 7 2021

\(\Leftrightarrow\)\(4x(x^{2}-4)=0\)

\(\Leftrightarrow\)\(\left[\begin{array}{} 4x=0\\ x^{2}-4=0 \end{array} \right.\)

\(\Leftrightarrow\)\(\left[\begin{array}{} x=0\\ x=2,x=-2 \end{array} \right.\)

14 tháng 8 2021

\(\sqrt{16x}=8\Leftrightarrow16x=64\Leftrightarrow x=4\)

Ta có: \(\sqrt{16x}=8\)

\(\Leftrightarrow16x=64\)

hay x=4