1.Cho các số thực x, y, z thỏa mãn:
\(\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\)
Tính \(P=\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}\)
* các bạn giúp mk nha * ( 2 bạn trả lời dưới này bị sai rùi )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
Do đó :
\(\frac{y+z-x}{x}=1\)\(\Rightarrow\)\(2x=y+z\)
\(\frac{z+x-y}{y}=1\)\(\Rightarrow\)\(2y=x+z\)
\(\frac{x+y-z}{z}=1\)\(\Rightarrow\)\(2z=x+y\)
Suy ra :
\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{x}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)
Vậy \(P=8\)
Đề hơi sai
cậu vào đường link này sẽ rõ:http://olm.vn/hoi-dap/question/794605.html
Từ \(\frac{y+x-z}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Rightarrow\frac{y+x-z}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Rightarrow\frac{x+y+x}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
* Xét \(x+y+z\ne0\)
\(\Rightarrow x=y=z\)
Khi đó \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=2.2.2=8\)
* Xét \(x+y+z=0\)
\(\Rightarrow\left\{\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)
Khi đó \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=-1\)
...
=>\(\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=1\)
=>\(\frac{x^2}{y+z}+\frac{xy}{y+z}+\frac{xz}{y+z}+\frac{xy}{z+x}+\frac{y^2}{z+x}+\frac{yz}{z+x}+\frac{xz}{x+y}+\frac{yz}{x+y}+\frac{z^2}{x+y}=1\)
=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(\frac{xy}{y+z}+\frac{xz}{y+z}+\frac{xy}{z+x}+\frac{yz}{z+x}+\frac{xz}{x+y}+\frac{yz}{x+y}\right)=1\)
=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(\frac{xy+xz}{y+z}+\frac{xy+yz}{z+x}+\frac{xz+yz}{x+y}\right)=1\)
=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(x+y+z\right)=1\)
=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+1=1\)
=>\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)
TH1:x+y+z=0 \(\Rightarrow x=y=z=0\)
TH2:x+y+z\(\ne0\)
Áp dụng t/c .............
Được x+y+z=1/2
Biến đổi ta được \(x=\frac{1}{2};y=\frac{1}{2};z=-\frac{1}{2}\)
\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)
\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)
\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)
\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)
Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{y+z+z+x+x+y}{x+y+z}\)\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=2+2+2=6\)
Vì bài toán không yêu cầu tìm x; y; z nên ta có cách giải ngắn gọn thế thôi nha bn.
Kết quả bằng 6 nha
k tui nha
Thanks