K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{EAB}\) chung

Do đó: ΔAEB~ΔAFC

=>\(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

=>\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

=>\(AE\cdot AC=AF\cdot AB\)

b: Xét ΔADB vuông tại D có DM là đường cao

nên \(AM\cdot AB=AD^2\left(1\right)\)

Xét ΔADC vuông tại D có DN là đường cao

nên \(AN\cdot AC=AD^2\left(2\right)\)

Từ (1),(2) suy ra \(AM\cdot AB=AN\cdot AC\)

=>\(\dfrac{AB}{AC}=\dfrac{AN}{AM}\)

=>\(\dfrac{AN}{AM}=\dfrac{AE}{AF}\)

=>\(\dfrac{AE}{AN}=\dfrac{AF}{AM}\)

=>\(AN\cdot AF=AM\cdot AE\)

c: Xét ΔANM có \(\dfrac{AE}{AN}=\dfrac{AF}{AM}\)

nên EF//MN

12 tháng 5 2019

Đáp án B

G A → = − 2 G M →

11 tháng 5 2018

18 tháng 2 2017

Đáp án B

Gọi M là trung điểm của AB

Tam giác ABC có trọng tâm I suy ra  M I M C = 1 3

Tam giác ABC có trọng tâm J suy ra  M J M D = 1 3

Khi đó M I M C = M J M D ⇒ I J / / C D  (định lí Talet)

21 tháng 8 2019

Đáp án A

3 tháng 11 2017

Chọn A.

Áp dụng công thức độ dài đuờng trung tuyến ta có

28 tháng 8 2019

8 tháng 8 2017


13 tháng 11 2019

25 tháng 1 2017

Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

- Gọi M, N là trung điểm CA và BA.

ΔABC cân tại A có BM, CN là đường trung tuyến ứng với cạnh AC, AB.

⇒ BM = CN ( chứng minh ở bài 26)

Mà Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7 (Tính chất trọng tâm của tam giác)

⇒ GB = GC

- ΔAGB và ΔAGC có

AG chung

AB = AC (do ΔABC cân tại A)

GB = GC (chứng minh trên)

⇒ ΔAGB = ΔAGC (c.c.c)

Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

- Theo đề bài I cách đều ba cạnh của tam giác

Dựa vào chứng minh bài 36 ⇒ I là điểm chung của ba đường phân giác

⇒ I thuộc tia phân giác của Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

Vì G, I cùng thuộc tia phân giác của Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7 nên A, G, I thẳng hàng

10 tháng 4 2016

Gọi giao điểm của BG với AC là M;

CG với AB là N

Vì G là trọng tâm của ∆ ABC

nên BM, CN, là trung tuyến

Mặt khác ∆ABC cân tại A

Nên BM = CN 

Ta có GB = BM; GC = CN (t/c trọng tâm của tam giác)

Mà BM = CN nên GB = GC

Do đó: ∆AGB = ∆AGC (c.c.c)

=>   => G thuộc phân giác của 

Mà ∆ABI = ∆ACI (c.c.c)

=>  => I thuộc phân giác của 

Vì G, I cùng thuộc phân giác của  nên A, G, I  thẳng hàng