K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8

\(\left(x+2\right)^2-2\left(x+2\right)\left(2x-3\right)+\left(2x-3\right)^2=25\\ < =>\left[\left(x+2\right)-\left(2x-3\right)\right]^2=25\\ < =>\left(x+2-2x+3\right)^2-25=0\\ < =>\left(-x+5\right)^2-5^2=0\\ < =>\left(-x+5-5\right)\left(-x+5+5\right)=0\\ < =>-x\left(-x+10\right)=0\\ < =>x\left(x-10\right)=0\\ < =>\left[{}\begin{matrix}x=0\\x=10\end{matrix}\right.\)

Vậy: ... 

4 tháng 8

\(\left(x+2\right)^2-2\left(x+2\right)\left(2x-3\right)+\left(2x-3\right)^2=25\\ \Leftrightarrow\left(x+2-2x+3\right)^2=5^2\\\Leftrightarrow\left(-x+5\right)^2=5^2\\ \Leftrightarrow\left[{}\begin{matrix}-x+5=5\\-x+5=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=10\end{matrix}\right.\)
Vậy...

22 tháng 10 2023

\(a,(x-2)^2-25=0\\\Leftrightarrow (x-2)^2=25\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)

\(---\)

\(b,4x(x-2)+x-2=0\\\Leftrightarrow4x(x-2)+(x-2)=0\\\Leftrightarrow(x-2)(4x+1)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{1}{4}\end{matrix}\right.\)

\(---\)

\(c,4x(x-2)-x(3+4x)(?)\)

\(d,(2x-5)^2-3x(5-2x)=0\\\Leftrightarrow(2x-5)^2+3x(2x-5)=0\\\Leftrightarrow(2x-5)(2x-5+3x)=0\\\Leftrightarrow(2x-5)(5x-5)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\5x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=1\end{matrix}\right.\)

\(---\)

\(e,x^2-25-(x+5)=0(sửa.đề)\\\Leftrightarrow(x^2-5^2)-(x+5)=0\\\Leftrightarrow (x-5)(x+5)-(x+5)=0\\\Leftrightarrow(x+5)(x-5-1)=0\\\Leftrightarrow(x+5)(x-6)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=6\end{matrix}\right.\)

\(---\)

\(f,5x(x-3)-x+3=0\\\Leftrightarrow5x(x-3)-(x-3)=0\\\Leftrightarrow(x-3)(5x-1)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)

\(Toru\)

21 tháng 8 2021

a) \(\left(x+3\right)^2-\left(x-2\right)^3=\left(x+5\right)\left(x^2-5x+25\right)-108\)

\(\Leftrightarrow x^2+6x+9-x^2+4x-4=x^3-5x^2+25x+5x^2-25x+125-108\)

\(\Leftrightarrow x^3-10x+12=0\Leftrightarrow\left(x-2\right)\left(x^2+2x+6\right)=0\)

\(\Leftrightarrow x=2\)( do \(x^2+2x+6=\left(x+1\right)^2+4\ge4>0\))

18 tháng 4 2015

tìm x biết:

(3x-1) [- 1/2x+5]=0

1/4+1/3:(2x-1)=-5

[2x+3/5]2 - 9/25=0

-5(x+1/5)-1/2(x-2/3)=3/2x - 5 /6

[x+1/2]x [2/3-2x]=0

17/2-|2x-3/4|=-7/4

2/3x-1/2x =5/12

(x+1/5)2+17/25=26/25

[x.44/7+3/7].11/5-3/7=-2

3[3x-1/2]+1/9=0

Toán lớp 6Tìm x

 Trả lời  Câu hỏi tương tự

Chưa có ai trả lời câu hỏi này,bạn hãy là người đâu tiên giúp nguyenvanhoang giải bài toán này !

24 tháng 5 2017

3(3x-1/2)^3+1/9=0

23 tháng 9 2021

Bài 1:

\(N=2x^2+4y^2-2x-4y+15=2\left(x^2-x+\dfrac{1}{4}\right)+\left(4y^2-4y+1\right)+\dfrac{27}{2}=2\left(x-\dfrac{1}{2}\right)^2+\left(2y-1\right)^2+\dfrac{27}{2}\ge\dfrac{27}{2}\)

\(minN=\dfrac{27}{2}\Leftrightarrow x=y=\dfrac{1}{2}\)

Bài 2:

\(\Leftrightarrow4x^2+12x+9-25x^2+50x-25=0\)

\(\Leftrightarrow21x^2-62x+16=0\)

\(\Leftrightarrow\left(3x-8\right)\left(7x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=\dfrac{2}{7}\end{matrix}\right.\)

23 tháng 9 2021

Bạn vào giúp mk thêm câu nữa nhé.

17x + 3. ( -16x – 37) = 2x + 43 - 4x

<=>17x-48x-111=-2x+43

<=>-29x=154

<=> \(x=-\frac{154}{29}\)

-3. (2x + 5) -16 < -4. (3 – 2x)

\(\Leftrightarrow-6x-31< -12+8x.\)

\(\Leftrightarrow-14x< 19\Rightarrow x< -\frac{19}{14}\)

24 tháng 9 2021

1) \(ĐK:x\in R\)

2) \(ĐK:x< 0\)

3) \(ĐK:x\in\varnothing\)

4) \(=\sqrt{\left(x+1\right)^2+2}\) 

\(ĐK:x\in R\)

5) \(=\sqrt{-\left(a-4\right)^2}\)

\(ĐK:x\in\varnothing\)

 

19 tháng 6 2023

√(x² + x + 1) = 1

⇔ x² + x + 1 = 1

⇔ x² + x = 0

⇔ x(x + 1) = 0

⇔ x = 0 hoặc x + 1 = 0

*) x + 1 = 0

⇔ x = -1

Vậy x = 0; x = -1

--------------------

√(x² + 1) = -3

Do x² ≥ 0 với mọi x

⇒ x² + 1 > 0 với mọi x

⇒ x² + 1 = -3 là vô lý

Vậy không tìm được x thỏa mãn yêu cầu

--------------------

√(x² - 10x + 25) = 7 - 2x

⇔ √(x - 5)² = 7 - 2x

⇔ |x - 5| = 7 - 2x  (1)

*) Với x ≥ 5, ta có 

(1) ⇔ x - 5 = 7 - 2x

⇔ x + 2x = 7 + 5

⇔ 3x = 12

⇔ x = 4 (loại)

*) Với x < 5, ta có:

(1) ⇔ 5 - x = 7 - 2x

⇔ -x + 2x = 7 - 5

⇔ x = 2 (nhận)

Vậy x = 2

--------------------

√(2x + 5) = 5

⇔ 2x + 5 = 25

⇔ 2x = 20

⇔ x = 20 : 2

⇔ x = 10

Vậy x = 10

-------------------

√(x² - 4x + 4) - 2x +5 = 0

⇔ √(x - 2)² - 2x + 5 = 0

⇔ |x - 2| - 2x + 5 = 0 (2)

*) Với x ≥ 2, ta có: 

(2) ⇔  x - 2 - 2x + 5 = 0

⇔ -x + 3 = 0

⇔ x = 3 (nhận)

*) Với x < 2, ta có:

(2) ⇔ 2 - x - 2x + 5 = 0

⇔ -3x + 7 = 0

⇔ 3x = 7

⇔ x = 7/3 (loại)

Vậy x = 3

18 tháng 6 2023

1)

\(\Leftrightarrow x^2+x+1=1^2=1\\ \Leftrightarrow x^2+x=0\\ \Leftrightarrow x\left(x+1\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

2) Do \(x^2+1>0\forall x\) nên \(x\in\varnothing\)

3) 

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=7-2x\\ \Leftrightarrow\left|x-5\right|=7-2x\)

Nếu \(x\ge5\) thì

\(\Leftrightarrow x-5-7+2x=0\\ \Leftrightarrow3x-12=0\\ \Leftrightarrow3x=12\\ \Rightarrow x=4\)

=> Loại trường hợp này

Nếu \(x< 5\) thì

\(\Leftrightarrow5-x-7+2x=0\\ \Leftrightarrow x-2=0\\ \Rightarrow x=2\)

=> Nhận trường hợp này

Vậy x = 2 

4)

\(\Leftrightarrow2x+5=5^2=25\\ \Leftrightarrow2x=25-5=20\\ \Rightarrow x=\dfrac{20}{2}=10\)

5)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}-2x+5=0\\ \Leftrightarrow\left|x-2\right|-2x+5=0\)

Nếu \(x\ge2\) thì

\(\Leftrightarrow x-2-2x+5=0\\ \Leftrightarrow3-x=0\\ \Rightarrow x=3\)

=> Nhận trường hợp này

Nếu \(x< 2\) thì

\(\Leftrightarrow2-x-2x+5=0\\ \Leftrightarrow7-3x=0\\ \Leftrightarrow3x=7\\ \Rightarrow x=\dfrac{7}{3}\)

=> Loại trường hợp này

Vậy x = 3

7 tháng 8 2021

1, \(\left(x-1\right)\left(x+2\right)-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left[x+2-\left(x-1\right)\right]=0\)

\(\Leftrightarrow3\left(x-1\right)=0\Leftrightarrow x=1\)

2, \(\left(x-2\right)^2-3\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x-2-3\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(-2x-5\right)=0\Leftrightarrow x=-\dfrac{5}{2};x=2\)

3, \(\left(5-2x\right)\left(2x+7\right)=4x^2-25=\left(2x-5\right)\left(2x+5\right)\)

\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(5-2x\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left(5-2x\right)\left(2x+7+2x+5\right)=0\Leftrightarrow\left(4x+12\right)\left(5-2x\right)=0\Leftrightarrow x=-3;x=\dfrac{5}{2}\)

1) Ta có: \(\left(x-1\right)\left(x+2\right)-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2-x+1\right)=0\)

\(\Leftrightarrow x-1=0\)

hay x=1

2) Ta có: \(\left(x-2\right)^2-3\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-2-3x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(-2x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-5}{2}\end{matrix}\right.\)