\(\sqrt{2}=?\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{4x^2+x}+2x-1\right)\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2+x-\left(2x-1\right)^2}{\sqrt{4x^2+x}-2x+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2+x-4x^2+4x-1}{\sqrt{4x^2+x}-2x+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{5x-1}{-x\cdot\sqrt{4+\dfrac{1}{x}}-2x+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{5-\dfrac{1}{x}}{-\sqrt{4+\dfrac{1}{x}}-2+\dfrac{1}{x}}\)
\(=\dfrac{5-0}{-\sqrt{4+0}-2+0}=\dfrac{5}{-4}=-\dfrac{5}{4}\)
căn bậc 2 (√) của một số thực "a" là một số 'x' sao cho x2 = a, hoặc nói cách khác số x mà bình phương lên (kết quả của phép nhân với chính nó, hay x × x) là a.
Căn bậc 3 của số a là số x sao cho x^3 = a
{[2/(3 căn bậc hai của 2-4)]-[2/(3 căn bậc hai của 2+4)]}/[1/(căn bậc hai của 3 -căn bậc hai của 2)]
`sqrt{2} = 1,414213...`
`sqrt{2} = 2/sqrt{2} `
\(\sqrt{2}=1,41421356...\)