K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\left(3x+1\right)^3-\left(y-2\right)^2+\left(y-1\right)^3+\left(x+y\right)^2\)

Thay x=-1/3;y=3 vào A, ta được:

\(A=\left[3\cdot\dfrac{-1}{3}+1\right]^3-\left(3-2\right)^2+\left(3-1\right)^3+\left(-\dfrac{1}{3}+3\right)^2\)

\(=-1^2+2^3+\left(\dfrac{8}{3}\right)^2\)

\(=\dfrac{64}{9}+7=\dfrac{127}{9}\)

2 tháng 8

\(A=\left(3x+1\right).3-\left(y-2\right).2+\left(y-1\right).3+\left(x+y\right).2\\ \Leftrightarrow A=3.\left(3x+1+y-1\right)+2.\left(x+y-y+2\right)\\ \Leftrightarrow A=3.\left(3x+y\right)+2.\left(x+2\right)\)
Thay \(x=-\dfrac{1}{3};y=-3\) được:
\(A=3.\left[3.\left(-\dfrac{1}{3}\right)+\left(-3\right)\right]+2.\left[\left(-\dfrac{1}{3}\right)+2\right]\\ \Leftrightarrow A=3.\left(-1-3\right)+2.\dfrac{5}{3}\\ \Leftrightarrow A=3.\left(-4\right)+2.\dfrac{5}{3}\\ \Leftrightarrow A=-12+\dfrac{10}{3}\\ \Leftrightarrow A=-\dfrac{26}{3}\)
Vậy \(A=-\dfrac{26}{3}\) tại \(x=-\dfrac{1}{3};y=-3\)

8 tháng 4 2020

a) Thay x = -1 và y = 3 vào A, ta được :

A = 2.(-1)[(-1) + 3] - (-1) + 7 - 3

A = -2.2 + 1 + 4

A = -4 + 5

A = 1

b) |y| = 3 => \(\orbr{\begin{cases}y=3\\y=-3\end{cases}}\)

*Thay x =-1 và y = 3 vào biểu thức :

Phần này bạn sẽ làm ý như câu a vậy :33

*Thay x = -1 và y =-3 vào A, ta được :

A = 2.(-1).[(-1) + (-3)] - (-1) + 7 - (-3)

A = -2.(-4) + 1 + 7 + 3

A = 8 + 11

A = 19

25 tháng 10 2023

a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)

b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)

Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)

c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)

Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)

a: \(A=5\cdot2\cdot\left(-3\right)-10+3\cdot\left(-3\right)=-30-10-9=-49\)

 b: \(B=8\cdot1\cdot\left(-1\right)^2-1\cdot\left(-1\right)-2\cdot1-10\)

=8+1-2-10

=-3

30 tháng 3 2022

a: A=5⋅2⋅(−3)−10+3⋅(−3)=−30−10−9=−49

 b: B=8⋅1⋅(−1)2−1⋅(−1)−2⋅1−10

=8+1-2-10

=-3

26 tháng 8 2021

a) \(P=x\left(x-y\right)+y\left(x-y\right)=\left(x-y\right)\left(x+y\right)=x^2-y^2=5^2-4^2=9\)

b) \(Q=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)=x^3-xy-x^3-x^2y+x^2y-xy=0\)

20 tháng 12 2021

1) A. 999.

2) C. 9.

20 tháng 12 2021

1: A

2: C

26 tháng 1 2022

1. ĐKXĐ: \(x\ne\pm1\)

 

2. \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right)\cdot\dfrac{x+1}{2}\)

\(=\dfrac{\left(x+1\right)^2-\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{x^2+2x+1-x^2+4x-3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{6x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{2\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x-3}{x-1}\)

 

3. Tại x = 5, A có giá trị là:

\(\dfrac{5-3}{5-1}=\dfrac{1}{2}\)

 

4. \(A=\dfrac{x-3}{x-1}\) \(=\dfrac{x-1-3}{x-1}=1-\dfrac{3}{x-1}\)

Để A nguyên => \(3⋮\left(x-1\right)\) hay \(\left(x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\left(tmđk\right)\\x=0\left(tmđk\right)\\x=4\left(tmđk\right)\\x=-2\left(tmđk\right)\end{matrix}\right.\)

Vậy: A nguyên khi \(x=\left\{2;0;4;-2\right\}\)

 

\(A=2\cdot0^{-1}+0\cdot1^{100}-3\cdot\left(-1\right)\cdot1^0+3=3+3=6\)

29 tháng 7 2019

28 tháng 4 2019

Chọn A

Thay x = -2,y = 1/3 vào biểu thức A ta có

A = -3.(-2)2(1/3)3 = -4/9.

29 tháng 5 2022

Thay `x=\sqrt{3}` và `y=-1` vào `A`, ta được:

\(A=\left(\sqrt{3}\right)^2-\left|\left(\sqrt{3}\right)^2-\left(-1\right)\right|+2023\)

\(A=3-\left|3+1\right|+2023\)

\(A=3-4+2023\) ( vì `3+1>0` )

\(A=2022\)

29 tháng 5 2022

Tại \(x=\sqrt{3};y=-1\) giá trị của biểu thức là:

\(A=\sqrt{3}^2-\left|\sqrt{3}^2-\left(-1\right)^2\right|+2023=3-\left|3+1\right|+2023=3-4+2023=2022\)