Bài 1: Tìm GTNN của C(x)=9x^2-6x-4|3x-1|+6
Bài 2: Tìm GTLN của A(x)= (2x+1)^2 +(3x-2)^2+x-11
Mình cần gấp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(c,\text{PT có 2 }n_0\text{ phân biệt }\Leftrightarrow\Delta'=2^2-2m>0\Leftrightarrow2m< 4\Leftrightarrow m< 2\)
\(y=\sqrt{3}cosx-sinx=2\left(\dfrac{\sqrt{3}}{2}cosx-\dfrac{1}{2}sinx\right)=2cos\left(x+\dfrac{\pi}{6}\right)\)
Vì \(cos\left(x+\dfrac{\pi}{6}\right)\in\left[-1;1\right]\Rightarrow y=\sqrt{3}cosx-sinx\in\left[-2;2\right]\)
\(\Rightarrow y_{min}=-2\Leftrightarrow cos\left(x+\dfrac{\pi}{6}\right)=-1\Leftrightarrow x+\dfrac{\pi}{6}=\pi+k2\pi\Leftrightarrow x=\dfrac{5\pi}{6}+k2\pi\)
\(y_{max}=2\Leftrightarrow cos\left(x+\dfrac{\pi}{6}\right)=1\Leftrightarrow x+\dfrac{\pi}{6}=k2\pi\Leftrightarrow x=-\dfrac{\pi}{6}+k2\pi\)
Đặt \(sinx=t\left(t\in\left[-1;1\right]\right)\)
\(y=\left|sinx+cos2x\right|=\left|2sin^2x-sinx-1\right|\)
\(\Leftrightarrow y=\left|f\left(t\right)\right|=\left|2t^2-t-1\right|\)
\(f\left(-1\right)=2\Rightarrow y=2\)
\(f\left(1\right)=0\Rightarrow y=0\)
\(f\left(\dfrac{1}{4}\right)=-\dfrac{9}{8}\Rightarrow y=\dfrac{9}{8}\)
\(\Rightarrow y_{min}=0;y_{max}=2\)
21.
a) `2sin(x-30^@)-1=0`
`<=>sin(x-30^@)=1/2`
`<=> sin(x-30^@)=sin30^@`
`<=>[(x-30^@=30^@+k360^@),(x-30^@=180^@-30^@+k360^@):}`
`<=> [(x=60^@+k360^@),(x=180^@+k360^@):}`
b) `5sin^2x+3cosx+3=0`
`<=>5(1-cos^2x)+3cosx+3=0`
`<=>-5cos^2x+3cosx+8=0`
`<=>(cosx+1)(cosx=8/5)=0`
`<=>[(cosx=-1),(cosx=8/5\ (VN)):}`
`<=>x=180^@+k360^@`
22.
`-1<=sin2x<=1`
`<=>2<=3+sin2x<=4`
`=> y_(min)=2 ; y_(max)=4`
bài 1:
\(C\left(x\right)=9x^2-6x-4\left|3x-1\right|+6\)
\(=9x^2-6x+1-4\left|3x-1\right|+5\)
\(=\left(\left|3x-1\right|\right)^2-4\left|3x-1\right|+4+1\)
\(=\left(\left|3x-1\right|-2\right)^2+1>=1\forall x\)
Dấu '=' xảy ra khi |3x-1|=2
=>\(\left[{}\begin{matrix}3x-1=2\\3x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
Bài 2:
\(A\left(x\right)=\left(2x+1\right)^2+\left(3x-2\right)^2+x-11\)
\(=4x^2+4x+1+9x^2-12x+4+x-11\)
\(=13x^2-7x-6\)
\(=13\left(x^2-\dfrac{7}{13}x-\dfrac{6}{13}\right)\)
\(=13\left(x^2-2\cdot x\cdot\dfrac{7}{26}+\dfrac{49}{676}-\dfrac{361}{676}\right)\)
\(=13\left(x-\dfrac{7}{26}\right)^2-\dfrac{361}{52}>=-\dfrac{361}{52}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{7}{26}=0\)
=>\(x=\dfrac{7}{26}\)
=1