y-3y+7y=30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thao m =3 và HPT ta có:
\(\left\{{}\begin{matrix}\left(3-1\right)x+y=3\\x+\left(3-1\right)y=2\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x+y=3\\x+2y=2\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}4x+2y=6\\x+2y=2\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}4x+2y=6\\3x=4\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy với m=3 thì HPT có nghiệm (x;y) = (\(\dfrac{4}{3};\dfrac{1}{3}\))
a) Thay m=3 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}2x+y=3\\x+2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=3\\2x+4y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-1\\2x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\2x=3-y=3-\dfrac{1}{3}=\dfrac{8}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: Khi m=3 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Ta có:
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\left(1\right)\)
\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\) và \(3x+7y+5z=30\)
Áp dụng t/c DTSBN ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x+7y+5z}{3.21+7.14+5.10}=\frac{30}{211}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{21}=\frac{30}{211}\Rightarrow x=\frac{630}{211}\\\frac{y}{14}=\frac{30}{211}\Rightarrow y=\frac{420}{211}\\\frac{z}{10}=\frac{30}{211}\Rightarrow z=\frac{300}{211}\end{cases}}\)
Vậy ...
hok tốt!
Ta có: \(\hept{\begin{cases}2x=3y\\5y=7z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{2}\\\frac{y}{7}=\frac{z}{5}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{21}=\frac{y}{14}\\\frac{y}{14}=\frac{z}{10}\end{cases}\Rightarrow}\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
....................................................................
b tự làm nốt nhé
chúc bạn học tốt~
\(2x=3y\)\(\Rightarrow\)\(\frac{x}{3}=\frac{y}{2}\)hay \(\frac{x}{21}=\frac{y}{14}\)
\(5y=7z\)\(\Rightarrow\)\(\frac{y}{7}=\frac{z}{5}\)hay \(\frac{y}{14}=\frac{z}{10}\)
suy ra: \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)hay \(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5x}{50}=\frac{3x+7y-5z}{63+98-50}=\frac{30}{111}=\frac{10}{37}\)
đến đây bn tính tiếp nhé
Ta có
2 x − 7 y = 8 10 x + 3 y = 21 ⇔ x = 8 + 7 y 2 10. 8 + 7 y 2 + 3 y = 21
⇔ x = 8 + 7 y 2 40 + 35 y + 3 y = 21 ⇔ x = 8 + 7 y 2 38 y = − 19
⇔ x = 9 4 y = − 1 2 ⇒ x + y = 9 4 − 1 2 = 7 4
Đáp án: D
`y-3y+7y=30`
`=> (1-3+7) y = 30`
`=> 5y = 30`
`=> y = 30 : 5`
`=> y = 6`
Vậy `y=6`
\(y-3y+7y=30\\ \Rightarrow y.\left(1-3+7\right)=30\\ \Rightarrow5y=30\\ \Rightarrow y=30:5\\ \Rightarrow y=6\)
Vậy \(y=6\)