tính tổng 3+5+7+...+2019 +2021+2023
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=(-1-2+3+4)+(-5-6+7+8)+(-9-10+11+12)+...+(-2021-2022+2023+2024)-2024$
$=\underbrace{4+4+...+4}_{506}-2024$
$=4.506-2024=0$
Sửa đề:
A = 1 - 3 - 5 + 7 + 9 - 11 - 13 + 15 + ... + (2017 - 2019 - 2021 + 2023)
Số số hạng của A:
(2023 - 1) : 2 + 1 = 1012 (số)
Do 1012 chia hết cho 4 nên ta nhóm các số hạng thành từng nhóm, mỗi nhóm có 4 số hạng như sau:
A = 1 - 3 - 5 + 7 + 9 - 11 - 13 + 15 + ... + 2017 - 2019 - 2021 + 2023
= (1 - 3 - 5 + 7) + (9 - 11 - 13 + 15) + ... + (2017 - 2018 - 2021 + 2023)
= 0 + 0 + ... + 0
= 0
\(A=1-3+5-7+......-2019+2021-2023\)
\(A=\left(1-3\right)+\left(5-7\right)+....+\left(2021-2023\right)\)
\(A=-2+\left(-2\right)+....+\left(-2\right)\left(506 cặp\right)\)
\(A=-2.506\)
\(A=-1012\)
*) A=(1-3)+(5-7)+....+(2021-2023)
<=> A=-2+(-2)+...+(-2)
Dãy A có (2023-1):2+1=1012 số số hạng
=> Có 506 số (-2)
=> A=(-2).506=-1012
2) \(B=\left(1-2-3+4\right)+\left(5-6-7+8\right)+...+\left(1989-1990-1991+1992\right)+1993-1994\)
\(=0+0+...+0+1993-1994=0+1993-1994=-1\)
1-3-5+7+9-11-13+15+...+2017-2019-2021+2023=
=(1-3-5+7)+(9-11-13+15)+...+(2017-2019-2021+2023)=
=0+0+.....+0=0
Sửa đề: 1-2-3+4+5-6-7+8+...-2018-2019+2020+2021-2022-2023
=(1-2-3+4)+(5-6-7+8)+...+(2017-2018-2019+2020)+(2021-2022-2023)
=0+0+...+0+(-1-2023)
=-2024
A=1-3+5-7+...+2019-2021+2023
A = 1 + 5 + .. .+ 2019 + 2023 - 3 - 7 - ... - 2017 - 2021
A = ( 1 + 5 + ... + 2023 ) - ( 3 + 7 + ... + 2021 )
A = 512578
S = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) + ... + (2017 + 2018 - 2019 - 2020) + (2021 - 2022 + 2023) (nhóm các số hạng vào 505 nhóm, mỗi nhóm có 4 số hạng, thừa ra 3 số hạng nhóm vào 1 nhóm là 506 nhóm)
S = -4 + (-4) + ... + (-4) + 2022
S = -4 x 505 + 2022
S = -2022 + 2022
S = 0
S = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) + ... + (2017 + 2018 - 2019 - 2020) + (2021 - 2022 + 2023) (nhóm các số hạng vào 505 nhóm, mỗi nhóm có 4 số hạng, thừa ra 3 số hạng nhóm vào 1 nhóm là 506 nhóm)
S = -4 + (-4) + ... + (-4) + 2022
S = -4 x 505 + 2022
S = -2022 + 2022
S = 0
Số số hạng là \(\dfrac{2023-3}{2}+1=\dfrac{2020}{2}+1=1011\left(số\right)\)
Tổng của dãy số là \(\left(2023+3\right)\cdot\dfrac{1011}{2}=2026\cdot\dfrac{1011}{2}=1024143\)
Số số hạng dãy số là :
\(\left(2023-3\right):2+1=1011\) (số hạng)
Tổng là:
\(\left(2023+3\right)\times1011:2=1024143\)
Đáp số :...