\(x^2-5x+6\ge0\)
\(x^2-6x+8< 8\)
\(\frac{x-1}{3}-\frac{2x+1}{2}< \frac{5x+1}{6}-x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1-2x}{4}-2< \frac{1-5x}{8}+x\)
\(\Leftrightarrow\frac{2\left(1-2x\right)}{8}-\frac{16}{8}< \frac{1-5x}{8}+\frac{8x}{8}\)
\(\Leftrightarrow2-4x-16< 1-5x+8x\)
\(\Leftrightarrow-4x-14< 1-3x\)
\(\Leftrightarrow-x< 15\)
\(\Leftrightarrow x>-15\)
Vậy bất phương trình có tập nghiệm là: S ={x| x > -15}
b) \(\frac{1-x}{3}< \frac{x+4}{2}\)
\(\Leftrightarrow2\left(1-x\right)< 3\left(x+4\right)\)
\(\Leftrightarrow2-2x< 3x+12\)
\(\Leftrightarrow-5x< 10\)
\(\Leftrightarrow x>-2\)
Vậy bất phương trình có tập nghiệm là: S ={x| x > -2}
c) \(\frac{2x-3}{2}>\frac{8x-11}{6}\)
\(\Leftrightarrow3\left(2x-3\right)>8x-11\)
\(\Leftrightarrow6x-9>8x-11\)
\(\Leftrightarrow-2x>-2\)
\(\Leftrightarrow x< 1\)
Vậy bất phương trình có tập nghiệm là: S ={x| x < 1}
\(\dfrac{2}{x^2-x-6}+\dfrac{x+1}{x^2+x-12}=\dfrac{x}{x^2+6x+8}\)
\(\Leftrightarrow\dfrac{2}{\left(x-3\right)\left(x+2\right)}+\dfrac{x+1}{\left(x-3\right)\left(x+4\right)}=\dfrac{x}{\left(x+2\right)\left(x+4\right)}\)
=> 2(x+4)+(x+1)(x+2)=x(x-3)
⇔2x+8+x2+2x+x+2=x2-3x
⇔x2+5x+10=x2-3x
⇔x2-x2+5x+3x=-10
⇔8x=-10
\(\Leftrightarrow\dfrac{-5}{4}\)
Vậy S={-\(\dfrac{5}{4}\)}
a, Đặt\(\sqrt{x.\left(5-x\right)}=t\) \(\left(0\le t\right)\)
Bpt trở thành: \(-t^2+t+2< 0\)
<=> \(\left[{}\begin{matrix}t< -1\left(loai\right)\\t>2\end{matrix}\right.\)
Với t>2 =>\(\sqrt{x.\left(5-x\right)}>2\)
<=>\(-x^2+5x-4>0\)
<=>\(1< x< 4\)
<=>\(x\in\left(1;4\right)\)
b/ Hiển nhiên rằng vế phải không âm, do đó nghiệm của BPT chính là tất cả các giá trị làm cho biểu thức xác định
Vậy bạn chỉ cần tìm ĐKXĐ cho vế trái là xong (rất đơn giản)
\(a,2x-6< 0\Leftrightarrow2x>6\Leftrightarrow x>3\)
\(b,5x+2x< 4+25\Leftrightarrow7x< 29\Leftrightarrow x< \frac{29}{7}\)
\(c,-5x+6>8-10+8x\Leftrightarrow-5x-8x>8-10-6\)
\(-13x>-8\Leftrightarrow x< \frac{8}{13}\)
\(d,3x-12\le2-4x\Leftrightarrow3x+4x\le2+12\)
\(\Leftrightarrow7x\le14\Leftrightarrow x\le2\)
\(e,\frac{3\left(x-3\right)}{6}>\frac{2\left(2x-5\right)}{6}+\frac{6}{6}\Rightarrow3x-9>4x-10+6\)
\(\Leftrightarrow3x-4x>-4+9\Leftrightarrow x>-5\)
\(f,3\left(2x-3\right)>1+2\left(2+2x\right)\Leftrightarrow6x-9>1+4+4x\)
\(6x-4x>14\Leftrightarrow2x>14\Leftrightarrow x>7\)
Tự biểu diễn nha!
d: =>4x+6=15x-12
=>4x-15x=-12-6=-18
=>-11x=-18
hay x=18/11
e: =>\(45x+27=12+24x\)
=>21x=-15
hay x=-5/7
f: =>35x-5=96-6x
=>41x=101
hay x=101/41
g: =>3(x-3)=90-5(1-2x)
=>3x-9=90-5+10x
=>3x-9=10x+85
=>-7x=94
hay x=-94/7
\(x^2-5x+6\ge0\)
\(x^2-2x-3x+6\ge0\)
\(x\left(x-2\right)-3\left(x-2\right)\ge0\)
\(\left(x-3\right)\left(x-2\right)\ge0\)
\(\Rightarrow\)\(\hept{\begin{cases}x-3\ge0\\x-2\ge0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3\le0\\x-2\le0\end{cases}}\)
\(\Rightarrow\)\(\hept{\begin{cases}x\ge3\\x\ge2\end{cases}}\) hoặc \(\hept{\begin{cases}x\le3\\x\le2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge3\\x\le2\end{cases}}\)
vậy tập nghiệm của phương trình là \(\orbr{\begin{cases}x\ge3\\x\le2\end{cases}}\)
\(x^2-6x+8< 8\)
\(x^2-4x-2x+8< 0\)
\(x\left(x-4\right)-2\left(x-4\right)< 0\)
\(\left(x-2\right)\left(x-4\right)< 0\)
\(\Rightarrow\)\(\hept{\begin{cases}x-2>0\\x-4< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-2< 0\\x-4>0\end{cases}}\)
\(\Rightarrow\)\(\hept{\begin{cases}x>2\\x< 4\end{cases}}\) hoặc \(\hept{\begin{cases}x< 2\\x>4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2< x< 4\\\varnothing\end{cases}}\)
vậy \(2< x< 4\) hay \(x=3\)
\(\frac{x-1}{3}-\frac{2x+1}{2}< \frac{5x+1}{6}-x\)
\(\frac{\left(x-1\right).2}{6}-\frac{\left(2x+1\right).3}{6}< \frac{5x+1}{6}-\frac{6x}{6}\)
\(2x-2-6x-3< 5x+1-6x\)
\(-3x< 6\)
\(x>-2\)
vậy tập nghiệm của bất phương trình là \(x>-2\)