3x (X+2)-2=16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>(9x^2+24x-6x-16)(x^2+2x+1)=-16
=>(9x^2+18x-16)(x^2+2x+1)=-16
=>(9x^2+18x+9-25)(x^2+2x+1)=-16
=>[9(x+1)^2-25](x+1)^2=-16
=>9(x+1)^4-25(x+1)^2+16=0
Đặt (x+1)^2=a
=>9a^2-25a+16=0
=>a=1 hoặc a=16/9
=>(x+1)^2=1 hoặc (x+1)^2=16/9
=>\(x\in\left\{0;-2;\dfrac{1}{3};-\dfrac{7}{3}\right\}\)
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
a) 16 - 3x = 4
<=> 3x = 12
<=> x = 4
Vậy x = 4 là nghiệm phương trình
b) (x2 - 4x + 5)2 - (x - 1)(x - 3) = 4
<=> (x2 - 4x + 5)2 - 4 - (x - 1)(x - 3) = 0
<=> (x2 - 4x + 5 - 2)(x2 - 4x + 5 + 2) - (x - 1)(x - 3) = 0
<=> (x2 - 4x + 3)(x2 - 4x + 7) - (x - 1)(x - 3) = 0
<=> (x - 1)(x - 3)(x2 - 4x + 7) - (x - 1)(x - 3) = 0
<=> (x - 1)(x - 3)(x2 - 4x + 6) = 0
<=> (x - 1)(x - 3) = 0 (Vì x2 - 4x + 6 > 0 \(\forall x\))
<=> \(\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
Vậy x \(\in\left\{1;3\right\}\)là nghiệm phương trình
a)16-3x=4
3x=16-4
3x=12
x=4
Vậy x=4
b)(x2-4x+5)2-(x-1).(x-3)=4
[(x-2)2+1]2-[(x-2)+1].[(x-2)-1]=4
=>(x-2)2+2.(x-2).1+1-(x-2)2-12=4
2(x-2)=4
=>x-2=2
=>x=4
Vậy ....................
Chú bn học tốt
1.a)|−7x|=3x+16
Vì |-7x| ≥ 0 nên 3x+16 ≥ 0 ⇔ x ≥ \(\dfrac{-16}{3}\) (*)
Với đk (*), ta có: |-7x|=3x+16
\(\left[\begin{array}{} -7x=3x+16\\ -7x=-3x-16 \end{array} \right.\) ⇔ \(\left[\begin{array}{} -7x-3x=16\\ -7x+3x=-16 \end{array} \right.\)
⇔ \(\left[\begin{array}{} x=-1,6 (t/m)\\ x= 4 (t/m) \end{array} \right.\)
b) \(\dfrac{x-1}{x+2}\) - \(\dfrac{x}{x-2}\) = \(\dfrac{5x-8}{x^2-4}\)
⇔ \(\dfrac{(x-1)(x-2)}{x^2-4}\) - \(\dfrac{x(x+2)}{x^2-4}\) = \(\dfrac{5x-8}{x^2-4}\)
⇒ x2 - 2x - x + 2 - x2 - 2x = 5x - 8
⇔ -5x - 5x = -8 - 2
⇔ -10x = -10
⇔ x=1
2.7x+5 < 3x−11
⇔ 7x - 3x < -11 - 5
⇔ 4x < -16
⇔ x < -4
bạn tự biểu diễn trên trục số nha !
2:
\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)
B=(x1+x2)^2-2x1x2
=3^2-2*(-7)
=9+14=23
C=căn (x1+x2)^2-4x1x2
=căn 3^2-4*(-7)=căn 9+28=căn 27
D=(x1^2+x2^2)^2-2(x1x2)^2
=23^2-2*(-7)^2
=23^2-2*49=431
D=9x1x2+3(x1^2+x2^2)+x1x2
=10x1x2+3*23
=69+10*(-7)=-1
*) (x+7)(x-4)=2(x-4)
<=> (x+7)(x-4)=2(x-4)
<=> (x+7)(x-4)-2(x-4)=0
<=> (x-4)(x+7-2)=0
<=> (x-4)(x+5)=0
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-5\end{cases}}}\)
*) \(\left(3x-1\right)^2=16\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=4\\3x-1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=5\\3x=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}}}\)
\(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)
\(\Leftrightarrow\left[\left(3x-2\right)\left(3x+8\right)\right]\left[9\left(x+1\right)^2\right]=-16.9\)
\(\Leftrightarrow\left(9x^2+18x-16\right)\left(9x^2+18x+9\right)=-144\)
\(\Leftrightarrow\left(9x^2+18x\right)^2-7\left(9x^2+18x\right)-144=-144\)
\(\Leftrightarrow\left(9x^2+18x\right)^2-7\left(9x^2+18x\right)=0\)
\(\Leftrightarrow\left(9x^2+18x\right)\left(9x^2+18x-7\right)=0\)
\(\Leftrightarrow9x\left(x+2\right)\left(3x-1\right)\left(3x+7\right)=0\)
Tập nghiệm của pt là: \(S=\left\{0;-2;\frac{1}{3};\frac{-7}{3}\right\}\)
\(\left(3x-2\right)\left(x-1\right)^2\left(3x+8\right)=-16\)
\(\Leftrightarrow\left[\left(3x-2\right)\left(3x+8\right)\right]\left[9\left(x+1\right)^2\right]=-16.9=-144\)
\(\Leftrightarrow\left(9x^2+18x\right)^2-7\left(9x^2+18x\right)-144=-144\)
\(\Leftrightarrow\left(9x^2+18x\right)^2-7\left(9x^2+18x\right)=0\)
\(\Leftrightarrow\left(9x^2+18x\right)\left(9x^2+18x-7\right)=0\)
\(\Leftrightarrow9x\left(x+2\right)\left(3x-1\right)\left(3x+7\right)=0\)
Tập nghiệm của phương trình là : \(S=\left\{0;-2;\frac{1}{3};\frac{-7}{3}\right\}\)
\(3\times\left(x+2\right)-2=16\)
=>\(3\times\left(x+2\right)=16+2=18\)
=>\(x+2=\dfrac{18}{3}=6\)
=>x=6-2=4
= 3x(x+2)=18
=x+2=5
=x=3
Vậy x =3