K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2024

\(x^2+4x-y^2+4\\ =\left(x+2\right)^2-y^2\\ =\left(x+2+y\right)\left(x+2-y\right)\)

26 tháng 6 2021

a,sửa đề :  \(\left(\frac{1}{x^2+4x+4}-\frac{1}{x^2-4x+4}\right):\left(\frac{1}{x+2}+\frac{1}{x^2-4}\right)\)

\(=\left(\frac{1}{\left(x+2\right)^2}-\frac{1}{\left(x-2\right)^2}\right):\left(\frac{x-2+1}{\left(x+2\right)\left(x-2\right)}\right)\)

\(=\left(\frac{x^2-4x+4-x^2-4x-4}{\left(x+2\right)^2\left(x-2\right)^2}\right):\left(\frac{x-1}{\left(x+2\right)\left(x-2\right)}\right)\)

\(=\frac{-8x\left(x+2\right)\left(x-2\right)}{\left(x+2\right)^2\left(x-2\right)^2\left(x-1\right)}=\frac{-8x}{\left(x-1\right)\left(x^2-4\right)}\)

26 tháng 6 2021

b, \(\left(\frac{2x}{2x-y}-\frac{4x^2}{4x^2+4xy+y^2}\right):\left(\frac{2x}{4x^2-y^2}+\frac{1}{y-2x}\right)\)

\(=\left(\frac{2x}{2x-y}-\frac{4x^2}{\left(2x+y\right)^2}\right):\left(\frac{2x}{\left(2x-y\right)\left(2x+y\right)}-\frac{1}{2x-y}\right)\)

\(=\left(\frac{2x\left(2x+y\right)^2-4x^2\left(2x-y\right)}{\left(2x-y\right)\left(2x+y\right)^2}\right):\left(\frac{2x-\left(2x+y\right)}{\left(2x-y\right)\left(2x+y\right)}\right)\)

\(=\left(\frac{8x^3+8x^2y+2xy^2-8x^3+4x^2y}{\left(2x-y\right)\left(2x+y\right)^2}\right):\left(\frac{-y}{\left(2x-y\right)\left(2x+y\right)}\right)\)

\(=-\left(\frac{12x^2y+xy^2}{2x+y}\right)=\frac{-12x^2y-xy^2}{2x+y}\)

7 tháng 12 2019

d) \(\frac{4x^2-12x+9}{9-4x^2}=-\frac{\left(2x+3\right)^2}{\left(2x-3\right)\left(2x+3\right)}=\frac{2x+3}{2x-3}\)

Bạn ghi lại đề đi, khó nhìn quá

28 tháng 6 2021

\(a)\)

\(\left(x^2+\frac{y}{x}\right):\left(\frac{x}{y^2}-\frac{1}{y}+\frac{1}{x}\right)\)

\(\Rightarrow\frac{x^3+y}{x}:\frac{x^2-xy+y^2}{xy^2}\)

\(\Rightarrow\frac{x^3+y}{1}-\frac{y^2}{x^2-xy+y^2}\)

\(\Rightarrow\frac{x^3y^2+y^3}{x^2-xy+y^2}\)

\(=\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-2xy+xy-2y^2}\right):\dfrac{\left(2x^2+y\right)^2-4}{x\left(x+y\right)+\left(x+y\right)}:\dfrac{x+y}{2x^2+y+2}\)

\(=\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{\left(x-2y\right)\left(x+y\right)}\right)\cdot\dfrac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\cdot\dfrac{2x^2+y+2}{x+y}\)

\(=\dfrac{y^2-x^2-x^2-y^2-y+2}{\left(x-2y\right)\left(x+y\right)}\cdot\dfrac{x+1}{2x^2+y-2}\)

\(=\dfrac{-\left(2x^2+y-2\right)}{\left(x-2y\right)\left(x+y\right)}\cdot\dfrac{x+1}{2x^2+y-2}=\dfrac{-\left(x+1\right)}{\left(x-2y\right)\left(x+y\right)}\)

19 tháng 10 2021

\(a,=3x\left(y-z\right)-y\left(y-z\right)=\left(3x-y\right)\left(y-z\right)\\ b,=x^3\left(x-1\right)+x\left(x-1\right)=x\left(x^2+1\right)\left(x-1\right)\\ c,=x\left(y+z\right)+y\left(y+z\right)=\left(x+y\right)\left(y+z\right)\\ d,=\left(x-3\right)^2\\ e,=\left(x+2\right)^3\\ f,=\left(2x-x+y\right)\left(2x+x-y\right)=\left(x+y\right)\left(3x-y\right)\\ g,=\left(y+1\right)\left(5x-2\right)\\ h,=\left(x+2\right)^2\\ i,=x^2\left(x^2-2\right)\\ k,=3x\left(x-4y\right)\)