1.4+2.5+3.6+...+100.103
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đặt \(A=1.4+2.5+3.6+...+100.103\)
\(=1\left(2.2\right)+2\left(3+2\right)+3\left(4+2\right)+...+100\left(101+2\right)\)
\(=1.2+2.3+3.4+...+100.101+\left(1.2+2.2+3.2+...+100.2\right)\)
\(=1.2+2.3+3.4+...+100.101+2\left(1+2+3+...+100\right)\)
\(=1.2+2.3+3.4+...+100.101+2.100\left(100+1\right):2\)
\(=1.2+2.3+3.4+...+100.101+10100\)
Đặt \(B=1.2+2.3+3.4+...+100.101\)
\(\Rightarrow3B=1.2.3+2.3.3+3.4.3+100.101.3\)
\(\Rightarrow3B=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+100.101\left(102-99\right)\)
\(\Rightarrow3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+100.101.102-99.100.101\)
\(\Rightarrow3B=100.101.102\)
\(\Rightarrow B=343400\)
Khi đó \(A=343400=10100=333300\)
Đặt A = 1.4 + 2.5 + 3.6 + 4.7 + ... + 100.103
3A = 3.(1.2 + 2.3 + 3.4 + ... + 100.101] + 3.(2 + 4 + 6 + ... + 200)
= 1.2.3 + 2.3.3 + 3.4.3 + ... + 100.101.3 + 3.(2 + 4 + 6 + ... + 200)
\(\Rightarrow\) A = 100.101.105:3 = 353500


Đặt A = 1.4 + 2.5 + 3.6 + ... + 100.103
= 1.(2 + 2) + 2.(3 + 2) + 3.(4 + 2) +.... + 100.(101 + 2)
= 1.2 + 2.3 + 3.4 + ... + 100.101 + (1.2 + 2.2 + 3.2 + ... + 100.2)
= 1.2 + 2.3 + 3.4 + ... + 100.101 + 2(1 + 2 + 3 + .... + 100)
= 1.2 + 2.3 + 3.4 + .... + 100.101 + 2.100.(100 + 1) : 2
= 1.2 + 2.3 + 3.4 + ... + 100.101 + 10100
Đặt B = 1.2 + 2.3 + 3.4 + .... + 100.101
=> 3B = 1.2.3 + 2.3.3 + 3.4.3 + .... + 100.101.3
=> 3B = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 100.101.(102 - 99)
=> 3B = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 100.101.102 - 99.100.101
=> 3B = 100.101.102
=> B = 343400
Khi đó A = 343400 - 10100 = 333300






Ta có: \(A=1\cdot99+2\cdot98+3\cdot97+\cdots+98\cdot2+99\cdot1\)
\(=2\left(1\cdot99+2\cdot98+\cdots+49\cdot51\right)+50\cdot50\)
\(=2\left\lbrack1\left(100-1\right)+2\left(100-2\right)+\cdots+49\left(100-49\right)\right\rbrack+2500\)
\(=2\cdot\left\lbrack100\left(1+2+\cdots+49\right)-\left(1^2+2^2+\cdots+49^2\right)\right\rbrack+2500\)
\(=2\cdot\left\lbrack100\cdot\frac{49\cdot50}{2}-\frac{49\cdot\left(49+1\right)\left(2\cdot49+1\right)}{6}\right\rbrack+2500\)
\(=2\left\lbrack50\cdot49\cdot50-\frac{49\cdot50\cdot99}{6}\right\rbrack+2500\)
\(=2\cdot\left\lbrack49\cdot50\cdot50-49\cdot25\cdot33\right\rbrack+2500\)
\(=2\cdot49\cdot25\cdot\left(2\cdot50-33\right)+2500\)
\(=49\cdot50\cdot67+2500=166650\)
Ta có: \(B=1\cdot2\cdot3+2\cdot3\cdot4+\ldots+17\cdot18\cdot19\)
\(=2\left(2-1\right)\left(2+1\right)+3\left(3-1\right)\left(3+1\right)+\cdots+18\left(18-1\right)\left(18+1\right)\)
\(=2\cdot\left(2^2-1\right)+3\left(3^2-1\right)+\cdots+18\left(18^2-1\right)\)
\(=\left(2^3+3^3+\cdots+18^3\right)-\left(2+3+\cdots+18\right)\)
\(=\left(1^3+2^3+\cdots+18^3\right)-\left(1+2+3+\cdots+18\right)\)
\(=\left(1+2+\cdots+18\right)^2-\left(1+2+\cdots+18\right)\)
\(=\left(18\cdot\frac{19}{2}\right)^2-18\cdot\frac{19}{2}=\left(9\cdot19\right)^2-9\cdot19=29070\)
Ta có: \(C=1\cdot4+2\cdot5+\cdots+100\cdot103\)
\(=1\left(1+3\right)+2\left(2+3\right)+\cdots+100\cdot\left(100+3\right)\)
\(=\left(1^2+2^2+\cdots+100^2\right)+3\left(1+2+\cdots+100\right)\)
\(=\frac{100\left(100+1\right)\left(2\cdot100+1\right)}{6}+\frac{3\cdot100\cdot101}{2}\)
\(=\frac{100\cdot101\cdot201}{6}+\frac{3\cdot100\cdot101}{2}=50\cdot101\cdot67+3\cdot50\cdot101\)
\(=50\cdot101\cdot70=3500\cdot101=353500\)
Ta có: \(D=1\cdot3+2\cdot4+3\cdot5+\cdots+97\cdot99+98\cdot100\)
\(=1\left(1+2\right)+2\left(2+2\right)+3\left(3+2\right)+\cdots+97\cdot\left(97+2\right)+98\cdot\left(98+2\right)\)
\(=\left(1^2+2^2+\cdots+98^2\right)+2\cdot\left(1+2+3+\cdots+98\right)\)
\(=\frac{98\cdot\left(98+1\right)\left(2\cdot98+1\right)}{6}+2\cdot\frac{98\cdot99}{2}\)
\(=\frac{98\cdot99\cdot197}{6}+98\cdot99=49\cdot33\cdot197+98\cdot99=49\cdot33\left(197+2\cdot3\right)\)
\(=49\cdot33\cdot203=328251\)

`S = 1.4+2.5 + 3.6 +...+ 100.103`
`S = 1 . (2+2) + 2 (3+2) + 3 . (4+2) + ... + 100 . (101 + 2) `
`S = 1.2 + 2 . 1 + 2.3 + 2.2 + 3.4 + 2.3 + ... + 100 . 101 + 2. 100`
`S = 1.2 + 2.3+ 3.4 +... + 100.101 + 2.1 + 2.2 + 2.3 + ... + 2.100`
`S = 1.2 + 2.3+ 3.4 +... + 100.101 + 2(1+2+3+...+100) `
`S = 1.2 + 2.3+ 3.4 +... + 100.101 + 2 (100+1) . [(100-1):1+1] : 2`
`S = 1.2 + 2.3+ 3.4 +... + 100.101 + 10100`
Đặt `A = 1.2 + 2.3+ 3.4 +... + 100.101`
`3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + .... + 100 . 101. (102 - 99)`
`3A = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+100.101.102 -99.100.101`
`3A = 100.101.102`
`A = 343400`
`S = A + 10100`
`= 343400 + 10100`
`= 353500`