Cho tam giác ABC, ba đường cao AD, BE, CF cắt nhau tại H. Gọi I,J,K,L lần lượt là trung điểm của AB, AC, HC, HB. Chứng minh rằng 5 điểm I,J,K,L,E,F thuộc 1 đường tròn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H K D E F M
Em tài trợ cái hình cho mọi người dễ nhìn ạ!
à, cái chỗ đoạn thẳng H, A, D là đường đứt khúc ạ, em quên sửa!
1). Gọi DE cắt (O) tại P khác D. Do AD là đường kính của (O), suy ra A P D ^ = 90 0 , mà A H E ^ = 90 0 ( do H E ∥ B C ⊥ H A ), nên tứ giác APEH nội tiếp.
Ta có A P H ^ = A E H ^ (góc nội tiếp)
= A C B ^ H E ∥ B C = A P B ^ (góc nội tiếp)
⇒ P H ≡ P B
2). Ta có H P ⊥ A C ⇒ A E H ^ = A H P ^ = A E P ^
Suy ra EA là phân giác ngoài đỉnh E của tam giác DEF
Tương tự FA là phân giác ngoài đỉnh F của tam giác DEF
Suy ra A là tâm đường tròn bàng tiếp ứng với đỉnh D của tam giác DEF
3). Do I là tâm nội tiếp nên EI là tia phân giác trong.
Mà EA là tia phân giác ngoài, suy ra E I ⊥ A C ⇒ E I ∥ H B
Tương tự F I ∥ H C ; E F ∥ B C ⇒ Δ I E F v à Δ H B C có cạnh tương ứng song song, nên BE; CF và IH đồng quy.
a) Tam giác vuông ABO và ACO có chung cạnh huyền AO nên O, B, A, C cùng thuộc đường tròn đường kính AO.
b) Theo tính chất hai tiếp tuyến cắt nhau, ta có AB = AC nên ABC là tam giác cân tại A.
Lại có AO là phân giác nên đồng thời là đường trung tuyến. Vậy thì AO đi qua H hay A, H, O thảng hàng.
Theo liên hệ giữa góc ở tâm và góc nội tiếp cùng chắn một cung, ta có \(\widehat{KDC}=\frac{\widehat{BOC}}{2}\)
Theo tính chất hai tiếp tuyến cắt nhau ta cũng có: \(\widehat{COA}=\frac{\widehat{BOC}}{2}\)
Suy ra \(\widehat{KDC}=\widehat{COA}\)
Vậy thì \(\Delta KDC\sim\Delta COA\left(g-g\right)\Rightarrow\frac{CK}{AC}=\frac{CD}{AO}\Rightarrow AC.CD=CK.AO\)
c) Ta thấy \(\widehat{ABN}=\widehat{NBC}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến dây cung chắn các cung bằng nhau)
Vậy nên BN là phân giác góc ABC.
Lại có AN là phân giác góc BAC nên N là tâm đường tròn nội tiếp tam giác ABC.
d) Gọi J là trực tâm tam giác ABC. Ta có ngay \(JC\perp AB;BJ\perp AC\)
Vậy thì BO // JC ; BJ // OC
Suy ra tứ giác JBOC là hình bình hành.
Lại có OB = OC nên JBOC là hình thoi.
Từ đó ta có JB = JC = OB = OC = R.
Vậy khi A di chuyển trên tia By cố định thì BJ = R hay J thuộc đường tròn tâm B, bán kính R.
Sorry bạn nha ,mk ko bt làm câu d
a. Xét tứ giác AEDB có AEB=BDE=90
mà 2 góc này cùng nhìn cạnh AB
nên tứ giác AEDB nội tiếp hay A,E,D,B cùng thuộc 1 đường tròn
b. Tứ giác BDEA nội tiếp (theo a )
nên BAM=BED(cùng nhìn cạnh DB)
mặt khác BAM=BNM (góc nội tiếp chắn cung BM)
nên BED=BNM
mà 2 góc này ở vị trí đồng vị nên DE//MN
c. Ta thấy MN là dây cung của (O) và OC là bán kính
nên OC vuông góc với MN (t/c đường kính vuông góc với dây cung)
mà theo b ta có MN//DE nên CO vuông góc với DE
câu c hình như ko chặt chẽ cho lắm
mik cx làm vậy nhưng thầy bảo ko chặt chẽ
bắt làm lại câu c,d