Cho f (x) = 2x^2 + ax + 4 và g(x) = x^2 - 5x +b. Tìm a, b biết f(1) = g(2) vàf ( -1) =g(5).
Giúp với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Answer:`
Để cho `f(1)=g(2)` thì: `2. 1^2 + a.1+4=2^2 - 5.2-b`
`<=>2.1+a+4=4-10-b`
`<=>a+6=-6-b (1)`
Để cho `f(-1)=g(5)` thì: `2.(-1)^2 +a.(-1)+4=5^2 - 5.5-b`
`<=>2.1-a+4=25-25-b`
`<=>6-a=-b (2)`
Cộng các vế tương ứng từ `(1)(2)`, ta được: `(a+b)+(6-a)=(-6-b)+(-b)`
`<=>a+6+6-a=-6-b-b`
`<=>12=-6-2b`
`<=>b=-9`
Mà `6-a=-b=>6-a=9`
`<=>a=-3`
Lời giải:
$f(1)=g(2)$
$\Leftrightarrow a+6=-6-b$
$\Leftrightarrow a=-12-b(1)$
$f(-1)=g(5)$
$\Leftrightarrow 6-a=-b$
$\Leftrightarrow a=6+b(2)$
Từ $(1);(2)\Rightarrow -12-b=6+b$
$\Rightarrow b=-9$
$a=6+b=6-9=-3$
Vậy $a=-3; b=-9$
a) f(-2) = -1; f(-1) = 0; f(0) = 1; f(2) = 3
g(-1) = 0,5; g(-2) = 2; g(0) = 0
b) f(x) = 2 ⇒ x = 1
g(x) = 2 ⇒ x = 2 hoặc x = -2
a: f(a)=g(a)
=>5a-3=-1/2a+1
=>5,5a=4
=>\(a=\dfrac{4}{5.5}=\dfrac{8}{11}\)
b: f(b-2)=g(2b+4)
=>\(5\left(b-2\right)-3=-\dfrac{1}{2}\left(2b+4\right)+1\)
=>\(5b-13=-b-2+1=-b-1\)
=>6b=12
=>b=2
f(a) = g(a)
⇔ 5a - 3 = -a/2 + 1
⇔ 5a + a/2 = 1 + 3
⇔ 11a/2 = 4
⇔ 11a = 8
⇔ a = 8/11
Vậy a = 8/11 thì f(a) = g(a)
b) f(b - 2) = g(2b + 4)
⇔ 5.(b - 2) - 3 = -(2b + 4)/2 + 1
⇔ 5b - 10 - 3 = -b - 2 + 1
⇔ 5b + b = 1 + 13
⇔ 6b = 14
⇔ b = 7/3
Vậy b = 7/3 thì f(b - 2) = g(2b + 4)
a) * Ta có : f(0) = 2 ; g(0) = 2 => f(0) = g(0)
f(1) = 3 ; g(1) = 3 => f(1) = g(1) ;
f(-1) = 1 ; g(-1) = 1 => f(-1) = g(-1)
f(2) = 34 ; g(2) = 34 => f(2) = g(2)
f(-2) = -30 ; g(-2) = - 30 => f(-2) = f(2)
b) Nhận thấy f(3) = 245 ; g(3) = 125
=> f(3) > g(3)
=> f(x) \(\ne\) g(x)
Ta có \(f\left(1\right)=g\left(2\right)\)
hay \(2.1^2+a.1+4=2^2-5.2-b\)
\(2+a+4\) \(=4-10-b\)
\(6+a\) \(=-6-b\)
\(a+b\) \(=-6-6\)
\(a+b\) \(=-12\) \(\left(1\right)\)
Lại có \(f\left(-1\right)=g\left(5\right)\)
hay \(2.\left(-1\right)^2+a.\left(-1\right)+4=5^2-5.5-b\)
\(2-a+4\) \(=25-25-b\)
\(6-a\) \(=-b\)
\(-a+b\) \(=-6\)
\(b-a\) \(=-6\)
\(b\) \(=-b+a\) \(\left(2\right)\)
Thay \(\left(2\right)\) vào \(\left(1\right)\) ta được:
\(a+\left(-6+a\right)=-12\)
\(a-6+a\) \(=-12\)
\(a+a\) \(=-12+6\)
\(2a\) \(=-6\)
\(a\) \(=-6:2\)
\(a\) \(=-3\)
Mà \(a=-3\)
⇒ \(b=-6+\left(-3\right)=-9\)
Vậy \(a=3\) và \(b=-9\)
Cái Vậy \(a=3\) và \(b=-9\) bạn ghi là \(a=-3\) và \(b=-9\) nha mk quên ghi dấu " \(-\) "
f(1)=g(2)
=>\(2\cdot1^2+a\cdot1+4=2^2-5\cdot2+b\)
=>a+6=b-6
=>a=b-12
f(-1)=g(5)
=>\(2\cdot\left(-1\right)^2+a\cdot\left(-1\right)+4=5^2-5\cdot5+b\)
=>-a+4+2=b
=>-a+6=b
=>-b+12+6=b
=>-2b=-18
=>b=9
=>a=9-12=-3
thay x = 1 vào f(x), có
f(1) =2.12 + 1a + 4
f(1) =2 + a + 4
f(1) =a + 6
=> f(6) =a + 6
thay x = 2 vào g(x) , có
g(2) =22 - 5.2 + b
g(2) =4 - 10 + b
g(2) =-6 + b
=> g(2) = -6 + b
thay x = -1 vào f(x), có
f(-1) =2.(-1)2 - 1a + 4
f(-1) = 2 + a + 4
f(-1) = 6 + a
=> f(-1) = 6 + a
thay x = 5 vào g(x) , có
g(5) =(5)2 - 5.(5) + b
g(5) = 25 - 25 + b
g(5) = + b
vậy g(5)= b
có f(1) = g(2)
=> a + 6 = -6 + b
=> a + b = 0
=> a = -b hoặc b = -a
có f(-1) = g(5)
=> 6 + a = b
=> 6 = b - a
=> 6 = b - (-b)
=> 6 = b + b
=> b = 3
=> a = -b = -3